# **Appendix A**

Service Area System Characterization Report and NJDEP approval letter dated April 12, 2019



## State of New Jersey

PHIL MURPHY Governor

SHEILA OLIVER Lt. Governor DEPARTMENT OF ENVIRONMENTAL PROTECTION Mail Code – 401-02B Water Pollution Management Element Bureau of Surface Water Permitting P.O. Box 420 – 401 E State St Trenton, NJ 08625-0420 Phone: (609) 292-4860 / Fax: (609) 984-7938 CATHERINE R. McCABE Commissioner

April 12, 2019

To: Distribution List

Re: Review of Revised "Service Area System Characterization Report"

Passaic Valley Sewage Commission, NJPDES Permit No. NJ0021016 Bayonne City Municipal Utilities Authority, NJPDES Permit No. NJ0109240 Borough of East Newark, NJPDES Permit No. NJ0117846 Town of Harrison, NJPDES Permit No. NJ0108871 Town of Kearny, NJPDES Permit No. NJ0111244 City of Newark, NJPDES Permit No. NJ0108758 North Bergen Municipal Utilities Authority, NJPDES Permit No. NJ0108898 City of Paterson, NJPDES Permit No. NJ0108880

Dear Permittees:

Thank you for your submission dated March 28, 2019 which contains a revised version of the "Service Area System Characterization Report" as well as a "Summary of Changes" document. The original submission was dated June 2018 and was in response to Part IV.D.3.b.ii of the above referenced NJPDES permit. The New Jersey Department of Environmental Protection (the Department) provided technical comments on your original submission on October 9, 2018 and February 26, 2019 where this most recent submission is in response to those comments. The Department acknowledges that both the original and revised submissions were made in a timely manner. This letter is written to provide a determination on your most recent submission.

As you know, the System Characterization Report was preceded by a work plan, as required by Part IV.D.3.b.i of your NJPDES permit, where this work plan was approved by the Department on March 30, 2016 (Newark, East Newark, Harrison, Kearny, Paterson, PVSC) and August 1, 2016 (Bayonne, North Bergen, PVSC). The Department is also in receipt of continued quarterly progress reports which provide periodic progress updates on the System Characterization Report, as well as other aspects of the NJPDES permit.

In accordance with Part IV.G.1.a of the NJPDES CSO permit, the purpose of the System Characterization Report is to provide a "comprehensive characterization of the CSS as developed through records review, monitoring, modeling and other means as appropriate to establish the existing baseline conditions, evaluate the efficacy of the CSO technology based controls, and determine the baseline conditions upon which the LTCP will be based." As described in the October 9, 2018 and February 26, 2019 letters, the Department noted that Section I.6.3, Table I-13 of the reports depicts percent capture for the 2004 Typical Year. Additionally, in both technical comment letters, the Department objected to inclusion of this information in the July 2018 submission as well as the calculation method. As a result, the Department would like to meet with you to discuss this topic and will provide technical documentation regarding the percent capture

calculations under a separate cover letter. Please contact Jenna Immordino of the Bureau of Surface Water Permitting to arrange this meeting.

While the Department is in disagreement with the calculation method and inclusion of percent capture in the System Characterization Report, the Department has determined that the System Characterization Report meets the intent of the NJPDES permit condition. In sum, the Department has determined that the System Characterization Report requirement is hereby approved and that this permit condition is now satisfied.

The Department looks forward to submission of the Development and Evaluation of Alternatives for the LTCP as due on July 1, 2019. Please let us know if you have any questions regarding submission of that report.

Thank you for your continued cooperation.

Sincerely,

Susan Rosenwinkel

Susan Rosenwinkel Bureau Chief Bureau of Surface Water Permitting

C: Marzooq Alebus, Bureau of Surface Water Permitting Teresa Guloy, Bureau of Surface Water Permitting Dwayne Kobesky, Bureau of Surface Water Permitting Joe Mannick, Bureau of Surface Water Permitting Tim Ebersberger, Bureau of Nonpoint Pollution Control Richard Haytas, Jersey City Municipal Utilities Authority

#### **Distribution List:**

Bridget M. McKenna, Chief Operating Officer Passaic Valley Sewage Commissioners 600 Wilson Avenue Newark, NJ 07105

Brigite Goncalves, Chief Financial Officer Borough of East Newark 34 Sherman Avenue East Newark, NJ 07029

Kareem Adeem, Assistant Director of Public Works City of Newark 239 Central Avenue Newark, NJ 07102

Frederick Margron, Town Engineer City of Paterson 111 Broadway Paterson, NJ 07505 Tim Boyle, Superintendent Bayonne City Municipal Utilities Authority 610 Avenue C, Room 11 Bayonne, NJ 07002

Rocco Russomanno, Town Engineer Town of Harrison 318 Harrison Avenue Harrison, NJ 07029

Robert J. Smith, Town Administrator Town of Kearny 402 Kearny Avenue Kearny, NJ 07032

Frank Pestana, Executive Director North Bergen Municipal Utilities Authority 6200 Tonnelle Avenue North Bergen, NJ 07047

## SERVICE AREA SYSTEM CHARACTERIZATION REPORT

Submitted on behalf of the following participating Permittees By the Passaic Valley Sewerage Commission:

Passaic Valley Sewerage Commission (NJ 0021016) Bayonne City (NJ0109240) East Newark Borough (NJ0117846) Harrison Town (NJ0108871) Kearny Town (NJ0111244) Newark City (NJ0108758) North Bergen MUA (NJ0108898) Paterson City (NJ0108880)

> Passaic Valley Sewerage Commission Essex County 600 Wilson Avenue Newark, New Jersey



June 2018 Revised 01/21/19 Revised 03/28/19

## SECTION A - INTRODUCTION AND BACKGROUND

## A.0 SUMMARY OF CHANGES

This Report is for the Service Area System Characterization Report to be utilized by the Passaic Valley Sewerage Commission (PVSC) and the entities who own and operate combined sewer collection systems within the PVSC service area, with the exception of the Jersey City Municipal Utilities Authority. This Report describes the rainfall monitoring, wastewater sampling, collection system monitoring, modeling and other work necessary to characterize the CSO discharges from the participating municipalities and for development of a collections system model for the purposes of evaluating CSO control alternatives and development of a CSO Long Term Control Plan (LTCP). The history of this document and changes made to it are summarized below:

- June 29, 2018: Submitted Service Area System Characterization Report in fulfillment of the LTCP Permit requirement.
- Revised January 21, 2019: Modified the Service Area System Characterization Report to address comments made by NJDEP in letter dated October 9, 2018. A 45 day extension was granted on December 6, 2018. A copy of the October 9, 2018 letter and the 45 day extension email are included in Appendix E of this document. The June 29, 2018 submitted Service Area System Characterization Report was 228 pages including Appendix A. This version includes updates that resulted in a page total of **739** pages including the report, appendices and cover page. Table of Contents and page number updates are not reflected with redline-strikeout in this document. The following pages in this document have been changed to address NJDEP comments, with changes shown in redline-strikeout throughout the document:
  - a. DEP Comment 1 Pages 127 and 130 Modified.
  - b. DEP Comment 2 Pages 146 to 148 Modified.
  - c. DEP Comment 3 Pages **170-172** Modified. A new Appendix B has been added to the Report.
  - d. DEP Comment 4 Page **178** Modified. A new Appendix C has been added to the Report.
  - e. DEP Comment 5 Pages 227 to 231 Modified.
  - f. DEP Comment 6 Page 233 Modified.
  - g. DEP Comment 7 Although the 2004 Newark Airport annual precipitation volume is lower than the 1988 JFK Airport annual precipitation volume, overflow volumes are dependent on a number of additional factors. Rainfall intensity and inter-event time can influence overflows. River elevations can have a significant impact on overflows as well. Furthermore, the monitoring data collected under the current QAPP focused largely on overflow monitoring. The results of that overflow monitoring were used to further calibrate and validate the landside models that were used during the prior permit cycle. The models were updated to reflect more current information. For example, the control rules for the regulating gates in the City of Newark were updated based on operational logs from 2015. The model configuration for regulating chambers were updated based on record drawings. Also, dry weather flows to PVSC have been declining over the last decade, which allows more wet weather flow to be captured and sent to the plant.



It should be expected that the updated model results will differ from those historic studies.

Performing a 1988 simulation and a comparison analysis would require a significant amount of time and effort that is not commensurate with the value obtained from this analysis when considering the overall objective of preparing a LTCP. Given these factors and the monitoring and modeling work that was recently performed to improve the model from those historic studies, performing the suggested analysis is not warranted. No changes made to the Report.

- h. DEP Comment 8 Pages 82 to 86 Modified. A new Section D.2.10 has been added to the Report.
- i. DEP Comment 9 InfoWorks ICM software does not have the function to provide the water budget for the simulation period. The Innovyze technical team indicated that to generate a pie-chart of water budget, a specific SQL will be needed to get runoff, evaporation etc. for each subcatchment and each time step, and post data processing is needed, as well. This will require a significant amount of time and effort that is not commensurate with the value obtained from this analysis when considering the overall objective of preparing a LTCP. No changes made to the Report.
- j. DEP Comment 10 DWF values for individual flow meters were included in Figure E-4, page 92 (Dry Weather Flow). No changes made to the Report.
- k. DEP Comment 11 Pages 93 to 96 Modified. A new Appendix D has been added to the Report.
- 1. DEP Comment 12 Page **102** Modified.
- m. DEP Comment 13 Pages 98 to 99 Modified.
- n. DEP Comment 14 Page **101** Modified.
- o. DEP Comment 15 Pages 98 to 103 Modified.
- p. DEP Comment 16 Page **106** Modified.
- q. DEP Comment 17 Page **110** Modified.
- r. DEP Comment 18 Page **122** Modified.
- s. DEP Comment 19 Pages 127, 130 and 131 Modified.
- t. DEP Comment 20 The System Characterization and Landside Modeling QAPP goals were:

- Supplement and update, as appropriate, the site specific dry and wet weather data to be used to recalibrate and verify the InfoWorks collections system model of those collections systems tributary to the PVSC WPCF.

- Define the combined sewer systems' hydraulic response to rainfall.

- Supplement the existing dry weather water quality and quantity data to be used in the representation of each CSO drainage basin.

- Determine the CSO flows and pathogen concentrations/loadings being discharged to the receiving streams as a result of varied rainfall events.

- Supplement the stormwater quality data for various land use applications.

These goals support the objectives of the Work Plan as stated in the NJDEP comment letter, which are:

- To predict overflow occurrence, volume, and, in some cases, quality for rain events other than those which occurred during the monitoring phase. These can



include a storm event of large magnitude (long recurrence period) or numerous storm events over an extended period of time.

- To predict the performance of portions of the CSS that have not been extensively monitored.

- To develop CSO statistics, such as annual number of overflows and percent of combined sewage captured as described in the CSO Control Policy.

- To optimize CSS performance as part of Nine Minimum Control (NMC) implementation. In particular, modeling can assist in locating storage opportunities and hydraulic bottlenecks and demonstrate that system storage and flow to the POTW are maximized.

- To evaluate and optimize control alternatives, from simple controls described under the NMC to more complex controls proposed in a municipality's LTCP. An example of a simple control would be to raise weir heights to increase inline storage. The model can be used to evaluate the resulting reductions in CSO volume and frequency.

No changes made to the Report.

- u. DEP Comment 21 Pages 131 and 132 Modified.
- v. DEP Comment 22 Page 131 Modified.
- w. DEP Comment 23 Pages 148 to 153 Modified.
- x. DEP Comment 24 Page **178** Modified. A new Appendix C has been added to the Report.
- y. DEP Comment 25 Pages 194 Modified.
- z. DEP Comment 26 Pages **194 to 237** Modified. A new Appendix D has been added to the Report.
- aa. DEP Comment 27 As stated in the EPA's Guidance for Long-Term Control Plan (EPA 832-B-95-002), and as referenced by NJDEP's Technical Comments on the "Service Area System Characterization Report, one of the primary objectives of the combined sewer system modeling study is:

To develop CSO statistics, such as annual number of overflows and percent of combined sewerage captured as described in the CSO Control Policy.

The Percent Capture provided in Table I-12, page **237** is for existing conditions and is appropriate for the System Characterization Report. No changes have been made to the Report in response to this comment.

- bb. DEP Comment 28 The combined sewer overflow and stormwater sampling results in excel format have been provided under separate cover.
- Revised March 28, 2019: Modified the Service Area System Characterization Report to address comments made by NJDEP in a letter dated February 26, 2019 and by the MEG in a letter dated February 15, 2019. A copy of the February 26, 2019 letter is included in Appendix F of this document. A copy of the February 15, 2019 letter is included in Appendix B of this document. The January 21, 2019 submitted Service Area System Characterization Report included 739 pages including the report, appendices and cover page. This version includes updates that resulted in a page total of 797 pages including the report, appendices and cover page. Table of Contents and page number updates are not



reflected with redline-strikeout in this document. The following pages in this document have been changed to address NJDEP comments, with changes shown in redline-strikeout throughout the document:

- a. DEP Comment 1 The DWFs in Figure E-4 correspond to the temporary flow monitoring period: April 1, 2016 to August 31, 2016. Page 96 modified.
- b. DEP Comment 2 The July 31<sup>st</sup>, 2016 rainfall event was not replaced. Table E-2 of the report submitted on June 28, 2018 presented the four Calibration and Validation Rainfall Events based upon the Newark Airport gage. When considering only the Newark Airport gage, the precipitation that occurs on June 30<sup>th</sup>, 2016 and the precipitation that occurs on July 31<sup>st</sup>, 2016 are two separate events because they have an interevent time exceeding 6 hours. In response to Former NJDEP Comment 13, that analysis was updated to include all eight gages used in the calibration and validation of the landside model. For some of these gages the precipitation occurring on July 30<sup>th</sup> and July 31<sup>st</sup> are considered to be a single event because the interevent time does not exceed 6 hours. Therefore, on a system wide basis, the precipitation occurring on these two days is considered a single event. The updated table, now Table E-5, reflects that this events starts on July 30<sup>th</sup> and ends on July 31<sup>st</sup>. No changes required.
- c. DEP Comment 3 Appendix B has been updated to include the final MEG Memorandum. Pages 100, 174, 182, 211, and 255 – 263 modified.
- <u>d.</u> DEP Comment 4 Two different types of manning's N are mentioned in this <u>comment:</u>

<u>1. Subcatchment Manning's "n", roughness coefficient for the runoff</u> <u>surface in the combined area.</u>

2. Sewer mains Manning's "n", roughness coefficient for the conveyance pipe

The Manning's "n" on Page 188 and Appendix C is for Subcatchments, with a standard value of 0.05 for pervious surfaces and 0.02 for impervious surfaces. This was not adjusted during calibration/validation process.

The Manning's "n" on Page 194 cited in the comments (Section I.3.3), is referring to sewer mains. Most of these values were imported from the previous models. The values for new sewer lines were assigned based on available GIS information or with appropriate assumptions. No changes required.

- e. DEP Comment 5 Pages 245 through 248 Modified.
- f. DEP Comment 6 The inclusion of existing conditions Percent Capture is appropriate for the Service Area System Characterization Report. As provided in the response to former NJDEP Comment 27, as stated in EPA's Guidance for Long-Term Control Plan (EPA 832-B-95-002), and as referenced by NJDEP's Technical Comments on the "Service Area System Characterization Report, one of the primary objectives of the combined sewer system modeling study is:

"To develop CSO statistics, such as annual number of overflows and percent of combined sewerage captured as described in the CSO Control Policy." To that end, the percent capture is a part of the CSO statistics and is relevant for the system characterization.



Furthermore, the Evaluation of Alternatives Report, which is to be submitted on July 1, 2019, will consider a range of CSO control alternatives predicted to accomplish the requirements of the CWA using either the Presumption Approach or the Demonstration Approach. As acknowledged in the Department's comment, the elimination or the capture for treatment of no less than 85% by volume of the combined sewage collected in the CSS during precipitation events on a systemwide annual average basis is one of the criteria for the Presumption Approach. It is therefore necessary to establish the existing Percent Capture prior to the July 1st, 2019 Evaluation of Alternatives Report so that that alternatives for achieving 85% capture can be identified and evaluated for inclusion in that report.

The Permittees do not agree with the portion of Department's comment which states ".... any percent capture calculation that includes separately sewered communities is in direct conflict with the NJPDES". The 83.8% Percent Capture for the PVSC Interceptor Communities includes the portion of the hydraulically connected system that conveys flow to the PVSC WWRF through the PVSC interceptor. This includes municipalities comprised of both combined and separate sewers. The PVSC Interceptor Communities are a smaller inter-connected system of the hydraulically connected system, as defined by the NPDES permit. The flows from these communities enter the PVSC WWRF by gravity. The remaining flows from Bayonne, Jersey City, North Bergen and South Kearny are conveyed to the PVSC WWRF via a force main originating at the Jersey City West pump station. The NJPDES permit Part IV.B.1.c defines the Hydraulically Connected System as:

"Hydraulically connected system" means the entire collection system that conveys flows to one Sewage Treatment Plant (STP). On a case-by-case basis, the permittee, in consultation with the Department, may segment a larger hydraulically connected system into a series of smaller inter-connected systems, based upon the specific nature of the sewer system layout, pump stations, gradients, locations of CSOs and other physical features which support such a sub area. A hydraulically connected system could include multiple municipalities, comprised of both combined and separate sewers". To that end, the combined sewer systems and the separate sanitary systems are both a part of the hydraulically connected system of the PVSC WWRF.

Furthermore, the inclusion of flows from the municipalities served by separate sewers for the purposes of the calculation of percent capture is supported by the USEPA CSO Post Construction Compliance Monitoring Guidance (May 2012) document. Based on this document, it is clear that the USEPA considers upstream separate sewer areas to be part of the total combined sewage and should be used *"to evaluate compliance with CSO volume control targets."* Furthermore, the document states that separate sanitary flow to the combined sewer system from non-combined sewer systems should be accounted for *"to ensure that the flow volumes represent the CSS and all its contributing areas"* and that the *"combined sewage in the CSS during precipitation events is the sum of runoff plus sanitary* 



sewage entering the CSS." Therefore, the flow from the separate sanitary sewer systems is part of the combined sewage in the CSS and the flow from the separate sanitary sewer systems should be included in the percent capture calculation. Relevant portions of that document are included below for reference, including Figure 5 which portrays a situation similar to the PVSC Interceptor Communities:

(Excerpts from USEPA CSO Post Construction Compliance Monitoring Guidance (May 2012) :

## 4.1.2.1 Identifying Flows to the CSS

Permittees should ensure that the flow values used to evaluate compliance with CSO volume control targets include appropriate contributions of the various parts of the CSS and that the remaining CSO volumes are calculated correctly. For example, permittees should be sure to account for flows from upstream from separated areas, plus any infiltration and inflow that can be expected during critical periods (e.g., during rainfall events). Examples of the types of flows that should be accounted for to ensure that the flow volumes represent the CSS and all its contributing areas include the following:

• Flows from satellite communities that contribute to the CSS.

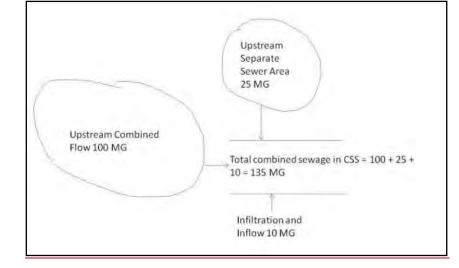
• Separate sanitary flow to the CSS from non-CSS areas.

• Infiltration and inflow in separate sanitary areas that contribute flow to the <u>CSS.</u>

- Flow in key interceptors in the CSS.
- Flow at key hydraulic control points (i.e., pump stations) in the CSS.
- Flow at treatment facilities within the CSS.

• Flow at the headworks of the publicly owned treatment works wastewater treatment plant (POTW WWTP).

Flow at POTW WWTP outfalls, including allowable CSO-related bypasses.
Flow at CSO outfalls.


## <u>4.1.2.4.1 Volume of Combined Sewage in the CSS during Precipitation</u> <u>Events</u>

The "combined sewage in the CSS during precipitation events" is the sum of runoff plus sanitary sewage entering the CSS (or dry-weather flow). Runoff should either be modeled or calculated as the combined sewage entering the CSS during precipitation events. Sanitary sewage should either be metered or apportioned from the sanitary sewage in CSS during precipitation events. Delineating what should be included in the "sanitary sewage" component should be negotiated between the permittee and the NPDES authority. For example, NPDES authorities may expect systems with high I/I to reduce baseline sanitary sewage flow levels to account for excessive I/I.



## 4.1.2.4.3 Calculating a Volume Balance

*Figure 5. Flows to the CSS during a particular 24-hour precipitation event.* 



In summary, the Permittees believe that the calculation for Percent Capture should be included in the Service Area System Characterization Report, and that the wet weather flows from the municipalities served by separate sewers should be included in that calculation.

g. Since the prior report submission, the baseline model was refined based on feedbacks from individual CSO permittees including Paterson, Newark, North Bergen, and Bayonne. The typical year overflow statistics (Section I.6.2, Table I-11 and Figure I-66 to Figure I-68) and percent capture (Section I.6.3, Table I-12) were updated accordingly in this report. Appendix C - Subcatchment Characteristics (Baseline Model) has been updated and included in this revised report. Appendix D - H&H Modeling Calibration Plots will be updated and submitted with the Final LTCP.

In future versions, this section will be further updated to include summaries of changes and when they were incorporated as appropriate.



## A.1 TITLE OF PLAN AND APPROVAL

Title:

Service Area System Characterization Report for Passaic Valley Sewerage Commission LTCP

**Preparer:** 

Project Officer:

Michael J. Hope, P.E., Greeley and Hansen LLC

QA Officer:

Timothy J. Dupuls, P.E., CDM2Smith

Date

6/19/18

Date

Passaic Valley Sewerage Commission:

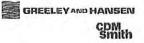
| PVSC<br>Program Manager: | A                                              | 06 | 20  | 2018 |
|--------------------------|------------------------------------------------|----|-----|------|
|                          | Bridget McKenna, Chief Operating Officer, PVSC |    | Dat | e    |

PVSC QA Officer:

| Marg    | ues      | E  |
|---------|----------|----|
| Marques | Elev. PV | SC |

New Jersey Department of Environmental Protection

**DEP** Permits:


Joseph Mannick, CSO Coordinator

Date

DEP QA:

Marc Ferko, Office of Quality Assurance

Date



#### Service Area System Characterization Report

Submitted by Passaic Valley Sewerage Commission:

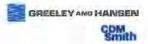
NJPDES Number NJ0021016 (Passaic Valley Sewerage Commission)

Approval of this submittal:

Permittee:

06 20 2018 Date

Bridget McKenna Chief Operating Officer, Passaic Valley Sewage Commission


#### **NJPDES Certification:**

Without prejudice to any objections timely made to permit conditions, I certify under penalty of law that this document and all attachments were prepared either: (a) under my direction or supervision; or (b) as part of a cooperative performed by members of the NJ CSO group effort in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for purposely, knowingly, recklessly, or negligently submitting false information.

Permittee:

Date

Bridget McKenna Chief Operating Officer, Passaic Valley Sewage Commission



## Service Area System Characterization Report

Submitted on behalf of the following participating Permittee by Passaic Valley Sewerage Commission:

NJPDES Number NJ0109240 (Bayonne City)

Approval of this submittal: Permittee: **Timothy Boyle** 

Superintendent, City of Bayonne Department of Public Works

#### **NJPDES Certification:**

Without prejudice to any objections timely made to permit conditions, I certify under penalty of law that this document and all attachments were prepared either: (a) under my direction or supervision; or (b) as part of a cooperative performed by members of the NJ CSO group effort in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for purposely, knowingly, recklessly, or negligently submitting false information.

6.19.18

Permittee:

Timothy Boyle Superintendent, City of Bayonne Department of Public Works

Date



## Service Area System Characterization Report

Submitted on behalf of the following participating Permittee by Passaic Valley Sewerage Commission:

NJPDES Number NJ0117486 (East Newark)

Approval of this submittal:

Permittee:

Ne

Date

Frank Pestana Licensed Operator, Borough of East Newark

#### **NJPDES** Certification:

Without prejudice to any objections timely made to permit conditions, I certify under penalty of law that this document and all attachments were prepared either: (a) under my direction or supervision; or (b) as part of a cooperative performed by members of the NJ CSO group effort in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for purposely, knowingly, recklessly, or negligently submitting false information.

Permittee:

Date

Frank Pestana Licensed Operator, Borough of East Newark



#### Service Area System Characterization Report

Submitted on behalf of the following participating Permittee by Passaic Valley Sewerage Commission:

NJPDES Number NJ0108871 (Harrison)

Approval of this submittal:

Permittee:

Roceo Russomano

Town Engineer, Town of Harrison

GREELEY AND HANSEN

Smith

NJPDES Certification:

Without prejudice to any objections timely made to permit conditions, I certify under penalty of law that this document and all attachments were prepared either: (a) under my direction or supervision; or (b) as part of a cooperative performed by members of the NJ CSO group effort in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for purposely, knowingly, recklessly, or negligently submitting false information.

Rocco Russomano

Permittee:

Town Engineer, Town of Harrison

## Service Area System Characterization Report

Submitted on behalf of the following participating Permittee by Passaic Valley Sewerage Commission:

#### NJPDES Number NJ0111244 (Kearny)

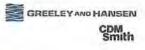
Approval of this submittal:

Permittee:

Date

Robert J. Smith Town Administrator, Town of Kearny

#### **NJPDES Certification:**


Without prejudice to any objections timely made to permit conditions, I certify under penalty of law that this document and all attachments were prepared either: (a) under my direction or supervision; or (b) as part of a cooperative performed by members of the NJ CSO group effort in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for purposely, knowingly, recklessly, or negligently submitting false information.

Permittee:

Robert J. Smith,

Town Administrator, Town of Kearny





## Service Area System Characterization Report

|            |                                                     | wing participating Permittee by erage Commission: |
|------------|-----------------------------------------------------|---------------------------------------------------|
|            | NJPDES Number N                                     | J0108758 (Newark)                                 |
| Approval o | f this submittal:                                   |                                                   |
| Permittee: |                                                     | 6-18-11                                           |
|            | Ras J. Baraka<br>Mayor, Cit <del>y of New</del> ark | Date                                              |

#### **NJPDES Certification:**

Without prejudice to any objections timely made to permit conditions, I certify under penalty of law that this document and all attachments were prepared either: (a) under my direction or supervision; or (b) as part of a cooperative performed by members of the NJ CSO group effort in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for purposely, knowingly, recklessly, or negligently submitting false information.

6-18-18 Date Permittee: Ras J. Baraka Mayor, City of Newark



## Service Area System Characterization Report

Submitted on behalf of the following participating Permittee by Passaic Valley Sewerage Commission:

NJPDES Number NJ0108988 (North Bergen Municipal Utilities Authority)

Approval of this submittal: Permittee: Frank Pestana Date

Executive Director, North Bergen Municipal Utilities Authority

#### **NJPDES** Certification:

Without prejudice to any objections timely made to permit conditions, I certify under penalty of law that this document and all attachments were prepared either: (a) under my direction or supervision; or (b) as part of a cooperative performed by members of the NJ CSO group effort in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for purposely, knowingly, recklessly, or negligently submitting false information.

Permittee:

Frank Pestana Date Executive Director, North Bergen Municipal Utilities Authority



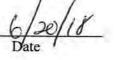
## Service Area System Characterization Report

Submitted on behalf of the following participating Permittee by **Passaic Valley Sewerage Commission:** 

#### NJPDES Number NJ0108880 (Paterson)

Approval of this submittal: Permittee:

Manny Ojeda


Director of Public Works, City of Paterson

#### **NJPDES Certification:**

Without prejudice to any objections timely made to permit conditions, I certify under penalty of law that this document and all attachments were prepared either: (a) under my direction or supervision; or (b) as part of a cooperative performed by members of the NJ CSO group effort in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for purposely, knowingly, recklessly, or negligently submitting false information.

Permittee:

Manny Ojeda Director of Public Works, City of Paterson





#### SERVICE AREA SYSTEM CHARACTERIZATION REPORT

## Submitted on behalf of the following participating Permittees By the Passaic Valley Sewerage Commission:

Passaic Valley Sewerage Commission (NJ 0021016) Bayonne City (NJ0109240) East Newark Borough (NJ0117846) Harrison Town (NJ0108871) Kearny Town (NJ0111244) Newark City (NJ0108758) North Bergen MUA (NJ0108898) Paterson City (NJ0108880)

#### **Approval of Report Submission:**

Permittee:

Richard Haytas Dat Senior Engineer, Jersey City Municipal Utilities Authority

#### **NJPDES Certification:**

Without prejudice to any objections timely made to permit conditions, I certify under penalty of law, to the best of my knowledge and belief, that the Passaic Valley Sewerage Commission ("PVSC") and the all Permittees in the list above, with the assistance of a professional engineering consultant, prepared this document and all attachments. JCMUA is engaged with PVSC and the all Permittees in the list above in order to coordinate planning to achieve NJDEP's objective of having one (1) long term combined sewer overflow control plan for all NJPDES permittees that are hydraulically connected to PVSC. PVSC has represented to me that this document and all attachments hereto are complete, accurate, and truthful.

I further certify that JCMUA's professional engineering consultant has performed a cursory review of this document and attachments and has not found any obvious elements that would conflict with the approach taken by PVSC and the remaining hydraulically-connected NJPDES permittees to long term control planning. I have also certified the reports prepared by PVSC and their engineering consultant entitled, "Typical Hydrologic Year Report", "Baseline Compliance Monitoring Report", and "Identification of Sensitive Areas Report" on 12/5/2017, 6/4/2018, and 6/13/2018. Since I have previously certified these 3 reports, I also certify Sections F.8, G.6, and H of the Service Area System Characterization Report which are based upon these 3 reports and except for these sections of the Service Area System Characterization Report I do not certify as to the accuracy of any data contained in this document or any attachments hereto, nor to any conclusions drawn by PVSC and/or its consultant. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for purposely, knowingly, recklessly, or negligently submitting false information.

Permittee:

November 5 2018

Richard Haytas Da Senior Engineer, Jersey City Municipal Utilities Authority

## A.2 DISTRIBUTION LIST

<u>Passaic Valley Sewerage Commission</u> Bridget McKenna, Chief Operating Officer Patricia Lopes, Director of Process Control Engineering and Regulatory Compliance Marques Eley, Process Control Engineer III, PE

Participating Permittees:

| 1 0           |                                               |
|---------------|-----------------------------------------------|
| Bayonne:      | Timothy Boyle, Superintendent of Public Works |
| East Newark:  | Frank Pestana, Licensed Operator              |
| Harrison:     | Rocco Russomano, Town Engineer                |
| Kearny:       | Robert J. Smith, Town Administrator           |
| Newark:       | Ras J. Baraka, Mayor of Newark                |
| North Bergen: | Frank Pestana, Executive Director             |
| Paterson:     | Manny Ojeda, Director of Public Works         |
|               |                                               |

<u>New Jersey Department of Environmental Protection</u> Dwayne Kobesky, Surface Water Permitting Joseph Mannick, Surface Water Permitting Marc Ferko, Office of Quality Assurance



## A.3 PROGRAM CONTACT INFORMATION

Contact information for those parties involved in the System Characterization Report is as follows:

Bridget McKenna Chief Operating Officer PVSC 600 Wilson Avenue Newark, NJ 07105

Marques Eley Process Control Engineer PVSC 600 Wilson Avenue Newark, NJ 07105

Patricia Lopes Regulatory Compliance PVSC 600 Wilson Avenue Newark, NJ 07105

Michael J. Hope Greeley and Hansen LLC 1700 Market Street Suite 2130 Philadelphia, PA 19103

Timothy J. Dupuis CDM Smith 111 Founders Plaza Suite 1600 East Hartford, CT 06108

Dwayne Kobesky NJDEP Water Quality Surface Water Permitting PO Box 420 401 E. State St., 2nd Floor Trenton, NJ 08625-0420 Joseph Mannick NJDEP Water Quality Surface Water Permitting PO Box 420 401 E. State St., 2nd Floor Trenton, NJ 08625-0420

Marc Ferko NJDEP Office of Quality Assurance PO Box 420 401 E. State St., 2nd Floor Trenton, NJ 08625-0420

Timothy Boyle Superintendent Public Works City of Bayonne 630 Avenue C Bayonne, NJ 07002

Rocco Russomanno Town Engineer Harrison Town 318 Harrison Avenue Harrison, NJ 07029

Robert J. Smith Town Administrator Town of Kearny 357 Bergen Avenue Kearny, NJ 07302 Andrea Hall Adebowale Asst. Director Dept of Water and Sewer City of Newark 239 Central Avenue Newark, NJ 07103

Frank Pestana Executive Director North Bergen MUA 6200 Tonnelle Avenue North Bergen, NJ 07047

Manny Ojeda Director of Public Works City of Paterson 111 Broadway, 4<sup>th</sup> Floor Paterson, NJ 07505

Frank Pestana Licensed Operator East Newark Borough 34 Sherman Avenue East Newark, NJ 07029



## A.4 TABLE OF CONTENTS

| SECTIO | DN A | A - INTRODUCTION AND BACKGROUND                                            | 1    |
|--------|------|----------------------------------------------------------------------------|------|
| A.0    | SU   | JMMARY OF CHANGES                                                          | 1    |
| A.1    | Τľ   | TLE OF PLAN AND APPROVAL                                                   | 1    |
| A.2    | DI   | STRIBUTION LIST                                                            | . 11 |
| A.3    | PR   | OGRAM CONTACT INFORMATION                                                  | . 12 |
| A.4    | ΤA   | ABLE OF CONTENTS                                                           | . 13 |
| A.5    | SI   | GNIFICANT BACKGROUND                                                       | . 22 |
| A.6    | PU   | JRPOSE OF REPORT                                                           | . 26 |
| A.7    | SU   | JMMARY OF WORK PLANS/QAPP                                                  | . 28 |
| A.7    | 7.1  | Receiving Waters Description                                               | . 29 |
| A.8    | CC   | ONTENTS OF THIS REPORT                                                     | . 29 |
| SECTIO | )N E | 3 - REGULATORY REQUIREMENTS                                                | . 31 |
| B.1    | IN   | TRODUCTION                                                                 | . 31 |
| B.2    | RE   | GULATORY CONTEXT                                                           | . 31 |
| B.2    | 2.1  | NJPDES Permit Requirements                                                 | . 31 |
| B.2    | 2.2  | USEPA's CSO Control Policy                                                 | . 33 |
| B.2    | 2.3  | USEPA CSO Guidelines                                                       | . 35 |
| B.2    | 2.4  | NJ Integrated Water Quality Monitoring and Assessment Report (303(d) list) | . 36 |
| B.2    | 2.5  | Interstate Environmental Commission Requirements                           | . 37 |
| B.2    | 2.6  | New Jersey Administrative Code                                             | . 40 |
|        |      | C - OVERVIEW OF WASTEWATER TREATMENT FACILITIES AND SERVI                  |      |
| C.1    | W    | ASTEWATER TREATMENT FACILITIES                                             | . 43 |
| C.2    | ΡV   | SC SEWER DISTRICT SERVICE AREA                                             | . 44 |
| C.2    | 2.1  | Combined Sewer Service Area                                                | . 45 |
| C.2    | 2.2  | Separate Sewer Service Area                                                | . 48 |
| SECTIO | )N I | O - CHARACTERISTICS OF THE COMBINED SEWER SYSTEM                           | . 52 |
| D.1    | SC   | OURCES OF COLLECTION SYSTEM DATA                                           | . 52 |
| D.2    | CH   | IARACTERISTICS OF COMBINED SEWER SYSTEM                                    | . 52 |
| D.2    | 2.1  | Description of CSO System                                                  | . 52 |
| D.2    | 2.2  | Trunk Sewers                                                               | . 53 |

|   | D.2   | .3  | Flow Diversion Structures and CSO Regulators                               | . 53 |
|---|-------|-----|----------------------------------------------------------------------------|------|
|   | D.2   | .4  | Interceptors                                                               | . 54 |
|   | D.2   | .5  | Pump Stations                                                              | . 61 |
|   | D.2   | .6  | Force Mains                                                                | . 62 |
|   | D.2   | .7  | CSO Control Facilities                                                     | . 63 |
|   | D.2   | .8  | CSO Outfalls                                                               | . 64 |
|   | D.2   | .9  | Green Infrastructure                                                       | . 78 |
|   | D.2   | .10 | Areas Prone to Flooding and Sewer System Backups                           | . 79 |
|   |       |     | - COLLECTION OF PRECIPITATION AND SEWER FLOW MONITORING                    |      |
| D |       |     |                                                                            |      |
|   | E.1   |     | FRODUCTION                                                                 |      |
|   | E.2   | SE  | WER FLOW MONITORING PROGRAM                                                | . 84 |
|   | E.3   |     | Y WEATHER FLOW (DWF) ANALYSIS                                              |      |
|   | E.4   | WI  | ET WEATHER FLOW ANALYSIS                                                   | . 91 |
|   | E.5   | SE  | WER FLOW MONITORING DATA SUMMARY                                           | . 93 |
|   | E.6   | RA  | INALL MONITORING LOCATIONS                                                 | . 93 |
|   | E.7   | RA  | INFALL EVENT ANALYSIS                                                      | . 96 |
|   | E.8   |     | LLECTION OF PVSC WATER RESOURCES RECOVERY FACILITY<br>ERATIONAL DATA       | . 97 |
|   | E.9   |     | ET WEATHER EVENT SELECTION FOR MODEL CALIBRATION /<br>LIDATION             | 100  |
|   | E.10  | SU  | MMARY                                                                      | 100  |
| S | ECTIO | N F | - CHARACTERISTICS OF THE RECEIVING WATERS                                  | 102  |
|   | F.1   | RE  | CEIVING WATERS OVERVIEW                                                    | 102  |
|   | F.1.  | 1   | CSO Receiving Waters                                                       | 102  |
|   | F.1.  | 2   | Summary of Impacted Drainage Basins                                        | 102  |
|   | F.2   | PO  | LLUTANTS OF CONCERN IN THE RECEIVING WATERS                                | 104  |
|   | F.2.  | 1   | Summary of the Identified POCs for Each Receiving Water                    | 104  |
|   | F.3   |     | CEIVING WATER USE DESIGNATIONS AND APPLICABLE WATER                        | 104  |
|   | F.3.  | 1   | NJ Integrated Water Quality Monitoring and Assessment Report (303(d) list) | 104  |
|   | F.3.  | 2   | Interstate Environmental Commission (IEC) Water Quality Regulations        | 104  |
|   | F.3.  | 3   | New Jersey Administrative Code                                             |      |
|   | F.4   |     | SSAIC RIVER                                                                |      |
|   | F.4.  |     | Watershed Drainage Basin                                                   |      |
|   |       |     |                                                                            |      |



| F.4.2  | Physical Characteristics                                                   | 105 |
|--------|----------------------------------------------------------------------------|-----|
| F.4.3  | Hydrodynamics                                                              | 107 |
| F.4.4  | Shoreline Characteristics                                                  | 107 |
| F.4.5  | NJ Integrated Water Quality Monitoring and Assessment Report (303(d) list) | 108 |
| F.4.6  | Designated Uses and Water Quality Criteria from NJ Code                    | 108 |
| F.4.7  | Classification and Water Quality Regulations from the IEC                  | 109 |
| F.5 NI | EWARK BAY                                                                  | 109 |
| F.5.1  | Watershed Drainage Basin                                                   | 109 |
| F.5.2  | Physical Characteristics                                                   | 109 |
| F.5.3  | Hydrodynamics                                                              | 109 |
| F.5.4  | Shoreline Characteristics                                                  | 112 |
| F.5.5  | NJ Integrated Water Quality Monitoring and Assessment Report (303(d) list) | 113 |
| F.5.6  | Designated Uses and Water Quality Criteria from NJ Administrative Code     | 113 |
| F.5.7  | Designated Zone and Water Quality Regulations from the IEC                 | 113 |
| F.6 UI | PPER NEW YORK BAY                                                          | 113 |
| F.6.1  | Watershed Drainage Basin                                                   | 113 |
| F.6.2  | Physical Characteristics                                                   | 114 |
| F.6.3  | Hydrodynamics                                                              | 114 |
| F.6.4  | Shoreline Characteristics                                                  | 114 |
| F.6.5  | NJ Integrated Water Quality Monitoring and Assessment Report (303(d) list) | 116 |
| F.6.6  | Designated Uses and Water Quality Criteria from NJ Administrative Code     | 116 |
| F.6.7  | Designated Zone and Water Quality Regulations from the IEC                 | 116 |
| F.7 HA | ACKENSACK RIVER                                                            | 116 |
| F.7.1  | Watershed Drainage Basin                                                   | 116 |
| F.7.2  | Physical Characteristics                                                   | 117 |
| F.7.3  | Hydrodynamics                                                              | 117 |
| F.7.4  | Shoreline Characteristics                                                  | 119 |
| F.7.5  | NJ Integrated Water Quality Monitoring and Assessment Report (303(d) list) | 119 |
| F.7.6  | Designated Uses and Water Quality Criteria from NJ Administrative Code     | 119 |
| F.7.7  | Designated Zone and Water Quality Regulations from the IEC                 | 120 |
| F.8 ID | ENTIFICATION OF SENSITIVE AREAS                                            | 120 |
| F.8.1  | Regulatory Requirements                                                    | 120 |
| F.8.2  | Summary of Sensitive Areas                                                 | 121 |



| SECTIO | N C | G - COLLECTION OF WATER QUALITY DATA                                                | 123 |
|--------|-----|-------------------------------------------------------------------------------------|-----|
| G.1    | BA  | ACKGROUND                                                                           | 123 |
| G.2    | RE  | GULATORY REQUIREMENTS                                                               | 124 |
| G.2    | .1  | NJPDES Permit Requirements                                                          | 124 |
| G.2    | .2  | USEPA's CSO Control Policy and Guidance Documents                                   | 124 |
| G.2    | .3  | Interstate Environmental Commission Requirements                                    | 124 |
| G.3    | 0\  | VERVIEW OF SEWER SYSTEM QUALITY MONITORING PROGRAM                                  | 124 |
| G.3    | .1  | Historic CSO Discharge Monitoring                                                   | 124 |
| G.3    | .2  | Sewer System Quality Monitoring Objectives                                          | 124 |
| G.3    | .3  | Sewer System Quality Sampling Locations                                             | 125 |
| G.3    | .4  | Analytical Parameters                                                               | 125 |
| G.3    | .5  | Sampling Schedule and Dates                                                         | 127 |
| G.3    | .6  | System Characterization and Landside Modeling QAPP Goals                            | 127 |
| G.4    | SE  | WER SYSTEM QUALITY RESULTS                                                          | 128 |
| G.4    | .1  | Plant Influent Sampling and Results                                                 | 129 |
| G.5    |     | ERVIEW OF HISTORICAL RECEIVING WATER QUALITY MONITORIN                              |     |
|        |     |                                                                                     |     |
| G.5    |     | Historic Water Quality Sampling                                                     |     |
| G.6    |     | /ERVIEW OF THE RECEIVING WATER QUALITY MONITORING PROG                              |     |
| G.6    | .1  | Receiving Water Quality Monitoring Objectives and Baseline Compliance<br>Monitoring | 131 |
| G.6    | .2  | Receiving Water Quality Sampling Locations                                          | 132 |
| G.6    | .3  | Analytical Parameters                                                               | 132 |
| G.6    | .4  | Sampling Schedule and Dates                                                         | 133 |
| G.6    | .5  | QAPP Overview                                                                       |     |
| G.7    | RE  | CEIVING WATER QUALITY RESULTS                                                       | 134 |
| SECTIO | NH  | H - TYPICAL HYDROLOGIC PERIOD                                                       | 136 |
| H.1    | IN  | TRODUCTION                                                                          | 136 |
| H.1    |     | Typical Year for CSO LTCP Development                                               |     |
| H.1    | .2  | Annual Precipitation Trend 1948-2015                                                |     |
| H.1    | .3  | Methodology of Typical Year Selection                                               |     |
| H.2    | ΤY  | PICAL YEAR SELECTION                                                                |     |
| H.2    |     | Annual Rainfall Statistics                                                          |     |
|        |     |                                                                                     |     |

| H.2.2     | Ranking Analysis                                     | 140 |
|-----------|------------------------------------------------------|-----|
| H.2.3     | Top Ranked Hydrologic Years                          | 141 |
| H.2.4     | Selected Hydrologic Period                           | 142 |
| SECTION I | - HYDROLOGIC AND HYDRAULIC MODELING                  | 144 |
| I.1 PR    | EVIOUS H&H MODELS                                    | 144 |
| I.1.1     | PVSC Interceptor Model                               | 146 |
| I.1.2     | Bayonne Model                                        | 147 |
| I.1.3     | North Bergen Models                                  | 148 |
| I.2 PV    | SC DISTRICT LTCP H&H MODEL INTEGRATION & DEVELOPMENT | 150 |
| I.2.1     | Integration of PVSC Interceptor Model                | 151 |
| I.2.2     | Integration of Bayonne Model                         | 164 |
| I.2.3     | Integration of North Bergen Models                   | 168 |
| I.2.5     | Integration of Jersey City Model                     | 173 |
| I.2.6     | Model Expansion to Whole Service Area                | 174 |
| I.2.7     | Model Evaluation Group (MEG) Review                  | 174 |
| І.З Н8    | &H MODEL COMPONENT AND INPUTS                        | 179 |
| I.3.1     | Rainfall                                             | 179 |
| I.3.2     | Subcatchment                                         | 181 |
| I.3.3     | Trunk sewer and Main Interceptor                     | 187 |
| I.3.4     | Manhole                                              | 187 |
| I.3.5     | CSO Outfall                                          | 188 |
| I.3.6     | Regulator                                            | 188 |
| I.3.7     | Pump Station and Force Main                          | 190 |
| I.3.8     | Rainfall Derived Infiltration and Inflow (RDII)      | 191 |
| I.3.9     | Dry Weather Flow                                     | 192 |
| I.3.10    | Real Time Control (RTC)                              | 193 |
| I.4 MO    | ODEL CONSTRUCTION SUMMARY                            | 199 |
| I.5 Н8    | &H MODEL CALIBRATION/VALIDATION                      | 202 |
| I.5.1     | Dry Weather Flow Calibration/Validation              | 203 |
| I.5.2     | Wet Weather Calibration/Validation                   | 203 |
| I.5.3     | Model Calibration/Validation Result Statistics       | 233 |
| I.6 H&    | &H MODEL RESULTS                                     | 238 |
| I.6.1     | Characterization of System Performance               | 241 |

| I.6.2     | Overflow Statistics | 246 |
|-----------|---------------------|-----|
| I.6.3     | Percent Capture     | 257 |
| SECTION J | - REFERENCES        | 258 |
| SECTION I | X - ABBREVIATIONS   | 259 |

## LIST OF TABLES

| Table A-1: | Municipality and associated QAPP submissions                           | 27    |
|------------|------------------------------------------------------------------------|-------|
| Table A-2: | System Characterization Report Contents and Organization               | 30    |
| Table B-1: | Permittees Covered Under this System Characterization Report           | 31    |
| Table B-2: | Review of Major Elements of the System Characterization Report         | 32    |
| Table B-3: | USEPA Guidance Documents Used in the Preparation of the                | 35    |
| Table B-4: | Components of New Jersey's Integrated List of Water (Integrated List)  | 36    |
| Table B-5: | IEC Water Quality Standards for IEC Class B Waters                     | 39    |
| Table B-6: | The NJ Administrative Code Classifications of PVSC Sewer District      | 40    |
| Table C-1: | Combined and Separate Sewer Service Area Municipalities                | 45    |
| Table C-2: | Passaic County Separate Sewer Areas                                    | 50    |
| Table C-3: | Bergen County Separate Sewer Areas                                     | 50    |
| Table C-4: | Essex County Separate Sewer Areas                                      | 50    |
| Table C-5: | Union County Separate Sewer Areas                                      | 51    |
|            | Permittees and Their Regulators                                        |       |
| Table D-2: | CSO Outfalls and Their Receiving Waters                                | 74    |
| Table D-3: | Chronic Sewer Blockage Locations                                       | 81    |
| Table D-4: | Streets Subject to Tidal Flooding                                      | 83    |
| Table E-1: | Temporary Flow Meter Locations                                         | 85    |
| Table E-2: | Event Wet Weather Volume and Peak for Temporary Metering Locations     | 92    |
| Table E-3: | Top 10 Rainfall Events (Volume Based), 5/20/16-8/10/16                 | 96    |
| Table E-4: | Average Daily WRRF Influent Flow                                       | 99    |
| Table E-5: | Calibration and Validation Rainfall Events                             | . 100 |
| Table F-1: | Watersheds Affected by CSO Discharges                                  | . 102 |
| Table F-2: | NJ Administrative Code Regarding the Passaic River                     | . 109 |
| Table F-3: | Characteristics of Principal Tidal Constituents in Newark Bay          | . 112 |
| Table F-4: | NJAC Regarding the Newark Bay                                          | . 113 |
| Table F-5: | NJAC Regarding the Newark Bay                                          | . 116 |
| Table F-6: | NJAC Regarding the Passaic River                                       | . 120 |
| Table G-1: | Lab Methods                                                            | . 125 |
| Table G-2: | CSO Sampling Dates                                                     | . 127 |
| Table G-3: | Stormwater Sampling Dates                                              | . 127 |
| Table G-4: | MLE of Stormwater Pathogen Data                                        | . 128 |
| Table G-5: | Pathogen Concentration Summary                                         | . 130 |
|            | Field Methods                                                          |       |
| Table G-7: | Lab Methods                                                            | . 133 |
| Table G-8: | Data Quality Criteria and Performance Measurement for Field Collection | . 134 |
| Table H-1: | Typical Hydrologic Year Ranking Parameters                             | . 138 |



| Table H-2: Annual Rainfall Statistics 1970-2015                       | 139 |
|-----------------------------------------------------------------------|-----|
| Table H-3: Top 20 Ranked Years                                        | 141 |
| Table H-4: Top 5 Ranked Years – Quantity of Rainfall Events           |     |
| Table H-5: Summary of the Recommended Typical Year - 2004             |     |
| Table H-6: Top 20 Rainfall Events by Depth in 2004                    |     |
| Table I-1: PVSC Service Area Previous H&H Models Summary              |     |
| Table I-2: Paterson Internal Regulator Description                    | 152 |
| Table I-3: Paterson Internal Regulator Downstream Flow Conveyance     |     |
| Table I-4: Bayonne RTC Table Update                                   |     |
| Table I-5: Summary of MEG Comments and Responses                      | 175 |
| Table I-6: Subcatchment Summary                                       |     |
| Table I-7: Impervious and Effective Impervious Area                   |     |
| Table I-8: Subcatchment Unit Width                                    |     |
| Table I-9: Average Slope %                                            |     |
| Table I-10: PVSC Regulators                                           |     |
| Table I-11: Typical Year CSO Overflow Volume, Frequency, and Duration |     |
| Table I-12: Typical Year % Capture                                    |     |
|                                                                       |     |

## LIST OF FIGURES

| Figure A-1: The PVSC Service District.                                                      | 23    |
|---------------------------------------------------------------------------------------------|-------|
| Figure A-2: The PVSC Sewer System Schematic                                                 | 24    |
| Figure B-1: Interstate Environmental Commission Water Quality Classifications               | 38    |
| Figure B-2: NJAC Classifications of PVSC Sewer District Waterbodies                         | 42    |
| Figure C-1: PVSC Municipalities                                                             | 44    |
| Figure C-2: PVSC Service Area with CSO Outfall Location                                     | 49    |
| Figure E-1: Flow Meter Location                                                             | 87    |
| Figure E-2: Missing Data period of Temporary Flow Meter Locations                           | 88    |
| Figure E-3: Hydrograph showing Dry Weather Flow                                             | 89    |
| Figure E-4: Dry Weather Flow                                                                | 90    |
| Figure E-5: Weekend and Weekday Dry Weather Flow Diurnal Pattern                            | 91    |
| Figure E-6: Flow Monitoring Site Wet Weather Analysis (Example Plot)                        | 93    |
| Figure E-7: Rain Gauge Locations                                                            | 94    |
| Figure E-8: Rainfall Distribution for All Rain Gauges 5/20/16-8/10/16                       | 95    |
| Figure E-9: Depth-Duration-Frequency for Top 4 Rainfall Events                              | 97    |
| Figure E-10: PVSC WRRF Influent Flow                                                        | 98    |
| Figure F-1: PVSC Sewer District Watersheds                                                  | . 103 |
| Figure F-2: Map of the Passaic River Basin Retrieved from https://passaicriver.org/passaic- |       |
| river-basin/                                                                                | . 106 |
| Figure F-3: The Newark Bay                                                                  | . 110 |
| Figure F-4: The Upper New York Bay                                                          | . 115 |
| Figure F-5: The Hackensack River                                                            | . 118 |
| Figure G-1: Overview of Sampling Station Locations                                          | . 126 |
| Figure G-2: Probability Distributions of Stormwater Pathogens by Land-use Type              | . 129 |

| Figure H-1: Historical Annual Precipitation at Newark Liberty International Airport | 137 |
|-------------------------------------------------------------------------------------|-----|
| Figure H-2: Ranking Score of 1970-2015                                              |     |
| Figure I-1: Service Area Simulated in the Pre-LTCP Models                           | 145 |
| Figure I-2: Received PVSC Interceptor Model                                         | 146 |
| Figure I-3: Received Bayonne Model                                                  |     |
| Figure I-4: Received North Bergen Model                                             | 150 |
| Figure I-5: Subcatchment Re-delineation of Paterson City                            | 156 |
| Figure I-6: Paterson City Internal Regulator Simulation                             | 158 |
| Figure I-7: Snapshot of Model Network in Paterson                                   | 160 |
| Figure I-8: Snapshot of Model Network in Newark                                     | 161 |
| Figure I-9: Snapshot of Model Network in East Newark                                |     |
| Figure I-10: Snapshot of Model Network in Kearny                                    |     |
| Figure I-11: Snapshot of Model Network in Harrison                                  | 163 |
| Figure I-12: Snapshot of Model Network in Bayonne                                   | 168 |
| Figure I-13: Digitizing Model Subcatchment Based on Paper Copy                      | 169 |
| Figure I-14: Model Schematics from Previous Modeling Document                       | 169 |
| Figure I-15: Selected Manhole and Sewers for Model Network                          | 170 |
| Figure I-16: Updated North Bergen Model Schematics                                  | 171 |
| Figure I-17: Snapshot of Model Network in North Bergen                              | 172 |
| Figure I-18: Snapshot of Model Network in Jersey City                               | 173 |
| Figure I-19: Separate Communities Added during Model Expansion                      | 177 |
| Figure I-20: Municipalities in the Final PVSC Model                                 | 178 |
| Figure I-21: Rainfall Stations Used in Model Calibration                            | 180 |
| Figure I-22: The PVSC Service District                                              | 184 |
| Figure I-23: South Kearny Pump Station Service Area                                 | 191 |
| Figure I-24: RTK Unit Hydrograph                                                    |     |
| Figure I-25: PVSC Wet Weather Operating Procedure                                   |     |
| Figure I-26: Snapshot of Entire PVSC H&H Model Network                              |     |
| Figure I-27: Calibration Plot for Interceptor_Paterson Main Line_I                  |     |
| Figure I-28: Calibration Plot for Interceptor_Paterson Main Line_II                 |     |
| Figure I-29: Calibration Plot for Interceptor_Passaic Chamber_I                     | 207 |
| Figure I-30: Calibration Plot for Interceptor Passaic Chamber II                    |     |
| Figure I-31: Calibration Plot for Interceptor_Second River Crossing_I               |     |
| Figure I-32: Calibration Plot for Interceptor_Second River Crossing_II              |     |
| Figure I-33: Calibration Plot for PVSC WRRF_I                                       |     |
| Figure I-34: Calibration Plot for PVSC WRRF_II                                      |     |
| Figure I-35: Calibration Plot for Separate Area_Totowa PS_I                         |     |
| Figure I-36: Calibration Plot for Separate Area_Totowa PS_II                        |     |
| Figure I-37: Calibration Plot for Separate Area_Hope Ave_I                          |     |
| Figure I-38: Calibration Plot for Separate Area_Hope Ave_II                         |     |
| Figure I-39: Calibration Plot for Separate Area_Nutley Golf Club_I                  |     |
| Figure I-40: Calibration Plot for Separate Area_Nutley Golf Club_II                 |     |
| Figure I-41: Calibration Plot for Separate Area_Union Outlet_I                      |     |
| Figure I-42: Calibration Plot for Separate Area_Union Outlet_II                     |     |
| Figure I-43: Calibration Plot for Combined Area_Paterson 6A Influent_I              | 221 |

| Figure I-44: Calibration Plot for Combined Area Paterson 6A Influent II                                                                          | 222   |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Figure I-45: Calibration Plot for Combined Area Hamilton St. I                                                                                   |       |
| Figure I-46: Calibration Plot for Combined Area Hamilton St. II                                                                                  |       |
| Figure I-47: Calibration Plot for Combined Area South 4th St. I                                                                                  |       |
| Figure I-48: Calibration Plot for Combined Area South 4th St. II                                                                                 |       |
| Figure I-49: Calibration Plot for Combined Area NB Central Pump Station I                                                                        |       |
| Figure I-50: Calibration Plot for Combined Area NB Central Pump Station II                                                                       |       |
| Figure I-51: Calibration Plot for CSO Overflow NE 15A I                                                                                          |       |
| Figure I-52: Calibration Plot for CSO Overflow NE 15A II                                                                                         | 230   |
| Figure I-53: Calibration Plot for CSO Overflow KE_07A_I                                                                                          | 231   |
| Figure I-54: Calibration Plot for CSO Overflow KE 07A II                                                                                         |       |
| Figure I-55: System-Wide Overflow Volume Calibration                                                                                             |       |
| Figure I-56: Modeled vs. Observed Flow Peak for Individual Events                                                                                |       |
| Figure I-57: Modeled vs. Observed Flow Volume for Individual Events                                                                              | 236   |
| Figure I-58: Modeled vs. Observed Flow Peak and Volume for All Four Events                                                                       | 237   |
| Figure I-59: Typical Year Collection System Inflows                                                                                              | 239   |
| Figure I-60: Typical Year Runoff and Losses                                                                                                      | 240   |
| Figure I-61: Typical Year Total Outflows                                                                                                         | 241   |
| Figure I-62: Correlation between Rainfall Depth and CSO Volume (Patterson, Newark)                                                               | 242   |
| Figure I-63: Correlation between Rainfall Depth and CSO Volume (Kearny, Harrison)                                                                | 243   |
| Figure I-64: Correlation between Rainfall Depth and CSO Volume (East Newark)                                                                     | 244   |
| Figure I-65: Correlation between Rainfall Depth and CSO Volume (North Bergen, Bayonne                                                            | e)245 |
| Figure I-66: Typical Year CSO Overflow Volume and Frequency Paterson                                                                             | 250   |
| Figure I-67: Typical Year CSO Overflow Volume and Frequency East Newark, Harrison,                                                               |       |
| Kearny and Newark                                                                                                                                | 253   |
| Figure I-68: Typical Year CSO Overflow Volume and Frequency North Bergen and Bayon                                                               | ne    |
|                                                                                                                                                  | 256   |
| Appendix A - Combined Sewer Overflow and Stormwater Sampling Results<br>Appendix B - MEG Group Meeting Summary with comments, MEG Memorandum and |       |

<u>Meeting</u> Presentations., Comments

- Appendix C Subcatchment Characteristics (Baseline Model)
- Appendix D H&H Modeling Calibration Plots
- Appendix E NJDEP Comment Letter dated October 9, 2018 and Email from NJDEP to PVSC Dated December 6, 2018 Granting 45 Day Extension
- Appendix F NJDEP Comment Letter dated February 26, 2019.

## A.5 SIGNIFICANT BACKGROUND

Passaic Valley Sewerage Commission (PVSC) provides wastewater treatment service to 48 municipalities within Bergen, Hudson, Essex, Union and Passaic Counties in the Passaic Valley Service District located in northeast New Jersey. In total PVSC services approximately 1.5 million people, 198 significant industrial users and 5,000 commercial customers. The PVSC District covers approximately 150 square miles from Newark Bay to regions of the Passaic River Basin upstream of the Great Falls in Paterson. PVSC's main interceptor sewer begins at Prospect Street in Paterson and generally follows the alignment of the Passaic River to the PVSC WRRF in the City of Newark.

PVSC does not own or operate any of the combined sewer overflow outfalls but has assumed a lead role in the development of the System Characterization and Landside Modeling Program on behalf of these permittees. The extent of the PVSC Service District and the combined sewer areas within the study area are illustrated in **Figure A-1**.

Eight of the municipalities within the PVSC District have combined sewer systems (CSSs) and have received authorization to discharge under their respective New Jersey Pollutant Discharge Elimination System (NJPDES) Permits for Combined Sewer Management. The eight PVSC CSO Permittees are listed below:

- Paterson City
- Newark City
- Kearny Town
- Harrison Town
- East Newark Borough
- City of Bayonne (Bayonne MUA was dissolved in 2016 and the City of Bayonne now own its CSS)
- Jersey City Municipal Utilities Authority (MUA)
- North Bergen MUA

A general schematic of the PVSC sewer system is included in Figure A-2.

Jersey City MUA is included in the list above, however it will submit its own System Characterization report separately. Any mention in this report of the infrastructure owned and operated (in part or in full) by Jersey City MUA is due to its hydraulic connection to the PVSC Water Resources Recovery Facility (WRRF) and is only included where it is necessary in order to properly characterize the PVSC system.

North Bergen Township has two combined sewer areas that are owned and operated by the North Bergen Township Municipal Utilities Authority (NBMUA) under two separate NJPDES permits; NBMUA and NBMUA (Woodcliff). The Woodcliff STP service area is separate from the PVSC service area and is covered in a separate System Characterization Report. Any mention in this



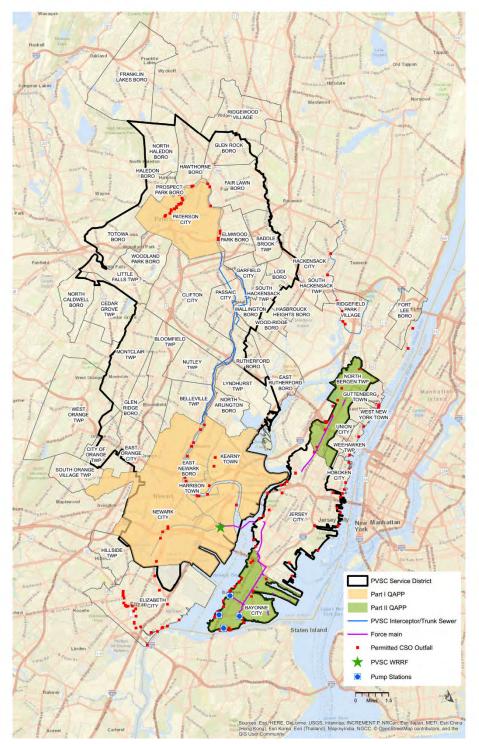



Figure A-1: The PVSC Service District<sup>1</sup>

<sup>&</sup>lt;sup>1</sup> QAPP listed in above legend refers to the "System Characterization and Landside Modeling Program Quality Assurance Project Plan (QAPP)," which have been previously approved by NJDEP.



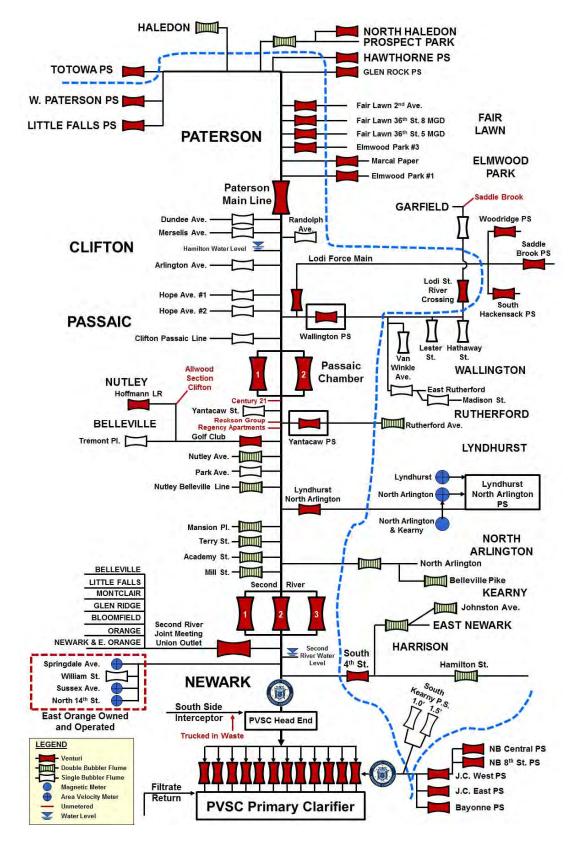



Figure A-2: The PVSC Sewer System Schematic

report of the infrastructure owned and operated (in part or in full) by North Bergen MUA (Woodcliff) is only included where it is necessary in order to properly characterize the North Bergen MUA system.

# Permit Requirements

The NJPDES permits issued to PVSC and each CSO Permittee include requirements for PVSC and the CSO Permittees to cooperatively develop a CSO Long Term Control Plan (LTCP). To facilitate the CSO LTCP development, PVSC has undertaken the development of the System Characterization Report on behalf of these permittees.

# Historical Characterization Reports

Between 1998 and 2003, PVSC conducted a Combined Sewer Overflow Discharge Characterization Study for all regulators and interceptor sewers owned and operated by the PVSC. This study was prepared by PVSC on behalf of the Borough of East Newark, the Towns of Harrison and Kearny and the City of Paterson. Jersey City, North Bergen MUA, and the Cities of Newark and Bayonne prepared their own separate reports in response to these NJPDES General Permit requirements. The following four reports were developed under this study:

- Rainfall Monitoring Study Report (December 1998): This study was conducted to develop an understanding of the rainfall characteristics in the combined communities in the PVSC service area, develop a correlation between rainfall characteristics and frequency of occurrence that causes a discharge, and develop rainfall monitoring for use in monitoring and modeling of CSO drainage basins.
- CSO Monitoring Report (December 1998): This effort was intended to quantify and qualify dry weather and wet weather wastewater flow and pollutant concentration variations at key CSO drainage basins so that this information can be used to calibrate and verify hydrologic and hydraulic models of the CSSs for the combined communities within the PVSC service area.
- CSO Characterization Study Modeling Report (December 2003): This study developed a refined US EPA approved Storm Water Management Model of the PVSC interceptor sewer system and tributary collections systems. This report presents the data collection efforts, describes the model, discusses characterization of CSOs and presents an approach for estimating pollutant loads from drainage areas that were not monitored within the study area.
- Combined Sewer System Modeling Study (February 2004): This study succeeded the 2003 Characterization and was intended to calibrate and verify the combined sewer overflow model to represent the response of the PVSC combined sewer system to historical precipitation events using a US EPA approved Storm Water Management Model.

Between 2003 and 2007, the Bayonne MUA and North Bergen MUA conducted individual Combined Sewer Overflow Discharge Characterization Studies for all regulators and interceptor sewers owned and operated within their respective systems. The reports were developed under the following studies:



# City of Bayonne

- *CSO Characterization Study Final Modeling Report Volumes I and II (November 2005);* Bayonne performed continuous rainfall monitoring; long-term flow monitoring at 8 stations both in-stream and at outfalls; and performed dry and wet weather monitoring and overflow water quality sampling at 3 locations. This effort informed the current sampling and modeling program effort by providing suitable locations to characterize the Bayonne system and will aid in calibration and verification of previously developed SWMM models of each Bayonne CSO drainage basin. It will also provide a baseline to compare dry and wet weather quality and quantity as well as a comparison of CSO flows and pollutant concentrations/loadings since the 2005 study.
- CSO Discharge Characterization Study Rainfall Monitoring Study Report (August 2006);

Bayonne conducted its rainfall monitoring program to develop an understanding of the rainfall characteristics of its service area, determine any correlation between rainfall characteristics and frequency of occurrence of CSO discharges, and establish a rainfall monitoring network. This information will supplement other rainfall data collected in as part of this characterization study to correlate the hydraulic and hydrologic response to rainfall of the combined sewer system.

#### North Bergen Municipal Utilities Authority

- CSO Characterization Study Group 2 Dry Weather Quality and Quantity Monitoring Report (June 2003);
- CSO Characterization Study Water Quality and Quantity Monitoring Report (March 2005)

These studies developed background information on the combined sewer systems tributary to each regulator as well as the analysis of historical rainfall patterns, overflow volumes and pollutants contained in the CSO discharges. The information collected and the modeling tools developed under these previous studies were supplemented and updated as part of the System Characterization and Landside Modeling Program Quality Assurance Project Plan (QAPP). Each section of the QAPP summarized the data collected under previous studies (performed under past QAPPs) and outlined the supplemental data collected under the most recent QAPP. Baseline Compliance Monitoring and Receiving Water Quality Modeling of the receiving waters were also addressed under separate QAPPs.

# A.6 PURPOSE OF REPORT

Section D.3.b.i of the NJPDES permit indicates that as part of the LTCP requirements a System Characterization Work Plan must be completed and submitted to the NJDEP 6 months from the effective date of the permit. To meet this requirement, two System Characterization and Landside Modeling Program QAPPs were submitted for all eight CSO Permittees and PVSC to be executed and performed by the PVSC. See **Table A-1** for each Municipality and associated QAPP. The System Characterization and Landside Modeling Program includes the rainfall monitoring, wastewater sampling, collections system monitoring, modeling and other work necessary to characterize the CSO discharges from the participating municipalities and for



development of a collections system model for the purposes of evaluating CSO control alternatives and developing a CSO LTCP.

| Municipalities and Permittees                                                                                | QAPP Submission  |
|--------------------------------------------------------------------------------------------------------------|------------------|
| PVSC;<br>East Newark Borough;<br>Town of Harrison;<br>Town of Kearny;<br>City of Newark;<br>City of Paterson | PVSC QAPP Part 1 |
| Bayonne City;<br>Jersey City MUA;<br>North Bergen MUA                                                        | PVSC QAPP Part 2 |

#### Table A-1: Municipality and associated QAPP submissions

NOTE: NBMUA (Woodcliff) and Guttenberg was included under separate QAPP.

In accordance with the PVSC and the eight CSO Permittee NJPDES Permits' LTCP requirements, a System Characterization Report shall be submitted by July 1, 2018. This System Characterization Report (SCR) has been developed to meet these permit requirements and incorporates the results of the Quality Assurance Project Plans (QAPPs) for the System Characterization and Landside Modeling Program, a summary of the Baseline Monitoring and Modeling Plan program, and the System Characterization mapping of the combined and separate sewer areas within the PVSC CSO Service District. Details of the Baseline Compliance Monitoring Program will be submitted under a separate Report. This System Characterization Report (SCR) developed on behalf of the following CSO Permittees:

- Paterson City
- Newark City
- Kearny Town
- Harrison Town
- East Newark Borough
- Bayonne City
- North Bergen MUA

Section G.1 of the PVSC NJPDES Permit Number NJ0021016 outlines the requirements of the System Characterization Monitoring and Modeling of the Combined Sewer system study that will provide a comprehensive characterization of the CSS.

The objective of the SCR is to provide NJDEP, PVSC, and the municipalities with a comprehensive and empirical understanding of the physical nature and hydraulic performance of



their respective sewerage systems for use in optimizing the performance of the current systems and in the development of CSO control alternatives

# A.7 SUMMARY OF WORK PLANS/QAPP

In accordance with consultation with NJDEP as NJPDES permitting authority, the following QAPPs have been developed for PVSC to meet the permitting requirements to cover sampling and analysis of the stormwater, wastewater and receiving water of the service area.

- 1. System Characterization and Landside Modeling Program QAPP, which includes wastewater collection system sampling and analysis as well as landside modeling. The System Characterization and Landside Modeling Program QAPP outlines the program necessary to address this requirement of the Permit. The results of the System Characterization Wastewater Collection System Sampling and analysis program are included in this System Characterization Report.
- 2. Baseline Compliance Monitoring QAPP, which includes sampling and analysis of the receiving waters. The results of the sampling and analysis of the Baseline Compliance Monitoring of the Receiving Waters will be included under a separate report; the Compliance Monitoring Program Report.
- 3. **Pathogen Water Quality Modeling QAPP;** which includes the computational model of the receiving waters (Not a permit requirement).

The project goals and objectives for the System Characterization and Landside Modeling Program included:

- Supplement and update, as appropriate, the site specific dry and wet weather data to be used to recalibrate and verify the InfoWorks collections system model of those collections systems tributary to the PVSC WRRF.
- Define the CSSs' hydraulic response to rainfall.
- Supplement the existing dry weather water quality and quantity data to be used in the representation of each CSO drainage basin.
- Determine the CSO flows and pathogen concentrations/loadings being discharged to the receiving streams as a result of varied rainfall events.
- Supplement the stormwater quality data for various land use applications.

PVSC and the eight CSO Permittees developed a monitoring program that collected dry and wet weather data that was used to calibrate and verify a hydraulic model for CSO basin upstream of the PVSC WRRF. This data also defined the combined sewer system response to rainfall and determined the quality and quantity of dry weather flow in the system as well as determine CSO flow quantities and pollutant concentrations/loadings discharged to receiving streams.

The purpose of the monitoring program was to quantify and qualify dry weather and wet weather wastewater flow and pathogen concentration variations at key CSO and stormwater drainage



basins to calibrate and verify hydrologic and hydraulic models (InfoWorks) of the CSSs within the Borough of East Newark, the Township of North Bergen, Towns of Harrison and Kearny, and the Cities of Bayonne, Newark and Paterson. This work was used to update the mathematical tool (sewer system model) used to assess residual storage and maximum hydraulic conveyance capacity in the PVSC, Bayonne and North Bergen interceptor system, pathogen concentrations and loading distributions during storm events and among CSO discharge points, calculate pathogen loads from CSOs and stormwater to the receiving water, and for the development and evaluation of long term control alternatives and/or modifications to the water quality standards (WQS) during wet weather events.

Data collected under the QAPPs was used to supplement the data from the 2003 CSO Characterization Study Modeling Report and the February 2004 CSO Modeling Study. The flow metering and CSO laboratory analytics were utilized in performing the following LTCP development tasks:

- Rainfall-Overflow Correlation Analysis
- Rainfall Event Characterization
- Collection System Model Validation
- Characterization of Sanitary, Stormwater and CSO Wastewater Quality

Wastewater quality sampling and flow metering were conducted in order to characterize the CSO quantity and quality for each of the combined sewer drainage areas. The characterization of the CSOs included determination of relationships between rainfall, runoff/overflow volume and pathogen loads. The data obtained was used in the validation of the InfoWorks Collections System Model for all the combined sewer drainage basins tributary to the PVSC control facilities, main interceptor sewer and force mains.

# A.7.1 Receiving Waters Description

The receiving waters include the receiving waterbody of the combined sewer service area of the PVSC Sewer District and expand from this service area to include all receiving and adjacent downstream waters that may be potentially affected by CSOs from the various combined sewer service areas of the NJ CSO Group. Impacted waters include the Passaic River, Hackensack River, Newark Bay, Hudson River, Kill Van Kull, Arthur Kill, Raritan River and Raritan Bay, as well as their tributaries.

# A.8 CONTENTS OF THIS REPORT

This report provides a comprehensive characterization of the CSS developed through records review, monitoring, modeling establishing the existing baseline conditions to evaluate the efficacy of the CSO technology based controls, and determine the baseline conditions upon which the LTCP will be based.

PVSC and the municipal permittees have developed a thorough understanding of their respective sewerage systems, the systems' responses to precipitation events of varying duration and



intensity, the characteristics of system overflows, and water quality issues associated with combined sewer overflows (CSOs) emanating from the systems and is presented in this report.

An overview of the organization and contents of this system characterization report are provided on **Table A-2**.

|   | Section                                                        | Topics Covered                                                                                                                                                                                                                                                                             |
|---|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| А | Introduction and<br>Background                                 | Documents the problem definition, background, project description, summary and table of contents.                                                                                                                                                                                          |
| В | Regulatory<br>Requirements                                     | Describes the scope, purpose and regulatory context of the System Characterization Report.                                                                                                                                                                                                 |
| с | Overview of<br>Wastewater Facilities<br>and Service Area       | Characterizes the service area comprising the PVSC combined sewered municipalities that are the subject of this system characterization report and current wastewater treatment facilities within the service area.                                                                        |
| D | Characteristics of the<br>Combined Sewer<br>System             | Characterizes the municipal collection sewers, sewer mains,<br>interceptors and appurtenances such as pump stations,<br>existing CSO control facilities, regulator structures, and CSO<br>outfalls.                                                                                        |
| E | Collection of<br>Precipitation and<br>Sewer Flow<br>Monitoring | Documents the precipitation and flow monitoring programs, data analyses, integration of wastewater treatment plant operational data, data validation and QA/QC and presents the results of the analyses.                                                                                   |
| F | Characteristics of the Receiving Waters                        | Describes the watersheds, physical characteristics, and<br>hydrodynamics of the receiving streams. Also describes the<br>designated uses and current water quality compliance (e.g.<br>303(d) listings) and achievement of designated use status.                                          |
| G | Collection of Water<br>Quality Data                            | Documents the regulatory requirements for water quality data collection, historic water quality data collection, the water quality monitoring program and related QAPP and receiving water quality results.                                                                                |
| н | Typical Hydrologic<br>Period                                   | Documents the requirements for and selection of the typical year and summarizes the hydrologic characteristics of the typical year.                                                                                                                                                        |
| I | Hydrologic and<br>Hydraulic Modeling                           | Documents the development and scope of the H&H model<br>used in this system characterization and to be used in the<br>development of CSO control alternatives. The<br>documentation includes model inputs, sensitivity analyses,<br>model calibration and validation and modeling results. |
| J | References                                                     |                                                                                                                                                                                                                                                                                            |
| K | Abbreviations                                                  |                                                                                                                                                                                                                                                                                            |

 Table A-2: System Characterization Report Contents and Organization



# **SECTION B - REGULATORY REQUIREMENTS**

#### **B.1 INTRODUCTION**

This document constitutes the PVSC SCR developed by PVSC on behalf of the municipalities and municipal authorities served by PVSC that are listed below in **Table B-1**. The SCR provides a "Characterization Monitoring and Modeling of the Combined Sewer System" under Part IV Section G.1 of the municipalities' respective New Jersey Pollutant Discharge Elimination System (NJPDES) permit.

| Municipality           | NJPDES #  |
|------------------------|-----------|
| PVSC                   | NJ0021016 |
| Borough of East Newark | NJ0021016 |
| Town of Harrison       | NJ0108871 |
| Town of Kearny         | NJ0111244 |
| City of Newark         | NJ0108758 |
| City of Paterson       | NJ0108880 |
| City of Bayonne        | NJ0209240 |
| North Bergen MUA       | NJ0108898 |

#### Table B-1: Permittees Covered Under this System Characterization Report

# **B.2** REGULATORY CONTEXT

#### **B.2.1 NJPDES Permit Requirements**

Under Section 402 of the CWA, all point source discharges to the waters of the United States must be permitted. USEPA Region II has delegated permitting authority in New Jersey to the New Jersey Department of Environmental Protection (NJDEP). The permits are reissued on a nominal five-year cycle. All twenty-one New Jersey municipalities and municipal authorities with CSSs were issued new permits in 2015 that set forth requirements for the completion of the system characterization and the development of LTCPs on the following schedule:

- System Characterization Work Plan (QAPP) must be completed and submitted to the NJDEP 6 months from the effective date of the permit – January 1, 2016
- Submittal of the System Characterization Report to NJDEP July 1, 2018;
- (LTCP Report 1) Development & Evaluation of CSO Control Alternatives July 1, 2019; and
- (LTCP Report 2) Selection and Implementation of Alternatives July 2020.

The System Characterization Reports are to be updates to and to utilize where applicable, previous system inventories and evaluations such as the *Sewage Infrastructure Improvement Act Planning Studies* conducted in the late 1990s. The municipalities documented their implementation of the nine minimum controls under an earlier NJPDES permit cycle. With minor exceptions such as lists of applicable previous studies, the 2015 permits are standardized. The 2015 major elements to be included in the System Characterization Report are outlined in Part IV (Specific Requirement: Narrative) paragraphs G.1.d.i through G.1.d.v. of the



permits. These requirements are reproduced on **Table B-2** along with the section of this SCR in which the requirements are addressed.

| Permit<br>Section | Permit Requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SCR Section                                                                       |  |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|
| Part IV<br>G.1.a  | "The permittee, as per D.3.a and G.10, shall<br>submit an updated characterization study that will<br>result in a comprehensive characterization of the<br>CSS developed through records review,<br>monitoring, modeling and other means as<br>appropriate to establish the existing baseline<br>conditions, evaluate the efficacy of the CSO<br>technology based controls, and determine the<br>baseline conditions upon which the LTCP will be<br>based. The permittee shall work in coordination<br>with the combined sewer communities for<br>appropriate Characterization, Monitoring and<br>Modeling of the Sewer System." | Entire SCR                                                                        |  |
|                   | "The characterization shall include a thorough<br>review of the entire collection system that conveys<br>flows to the treatment works including areas of<br>sewage overflows, including to basements,<br>streets and other public and private areas, to                                                                                                                                                                                                                                                                                                                                                                          | Section C:<br>Overview of Wastewater<br>Treatment Facilities and<br>Service Areas |  |
|                   | adequately address the response of the CSS to various precipitation events"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Section D:<br>Characteristics of the<br>Combined Sewer System                     |  |
| Part IV<br>G.1.b  | "The characterization shall identify the number,<br>location, frequency and characteristics of CSOs"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Section I<br>Hydrologic and Hydraulic<br>Modeling                                 |  |
|                   | "The characterization shall identify water quality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Section G:<br>Collection of Water Quality<br>Data                                 |  |
|                   | impacts that result from CSOs"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Section F:<br>Characteristics of the<br>Receiving Waters                          |  |
| Part IV<br>G.1.c  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                   |  |

 Table B-2: Review of Major Elements of the System Characterization Report



| Permit<br>Section    | Permit Requirement                                            | SCR Section                                                               |  |
|----------------------|---------------------------------------------------------------|---------------------------------------------------------------------------|--|
| Part IV              | Rainfall Records Analysis                                     | Section E:<br>Collection of Precipitation<br>and Sewer Flow<br>Monitoring |  |
| G.1.d.i              |                                                               | Section H:<br><b>Typical Hydrologic Period</b>                            |  |
| Part IV<br>G.1.d.ii  | Combined Sewer System Characterization                        | Section D:<br>Characterization of the<br>Combined Sewer System            |  |
| Part IV<br>G.1.d.iii | CSO Monitoring                                                |                                                                           |  |
| Part IV<br>G.1.d.iv  | System Hydrologic & Hydraulic Modeling                        | Section I:<br><i>Hydrologic &amp; Hydraulic<br/>Modeling</i>              |  |
| Part IV<br>G.1.d.v   | The permittee shall identify sensitive areas where CSOs occur | Section F: Characteristics of Receiving Waters                            |  |

# **B.2.2 USEPA's CSO Control Policy**

USEPA's CSO Control Policy (Policy) was issued in April of 1994<sup>2</sup> to elaborate on the 1989 National CSO Control Strategy and to expedite compliance with the requirements of the Clean Water Act (CWA). The Policy provided guidance to municipal permittees with CSOs, to the state agencies issuing National Pollution Discharge Elimination permits (e.g. NJDEP and NJPDES permits) and to state and interstate water quality standards authorities (e.g. the Interstate Environmental Commission).<sup>3</sup> The Policy establishes a framework for the coordination, planning, selection and implementation of CSO controls required for permittee compliance with the Clean Water Act (CWA).

<sup>&</sup>lt;sup>3</sup> The Interstate Environmental Commission (IEC) is a tri-state air and water pollution control agency – that is, a joint agency – serving the states of New York, New Jersey, and Connecticut.



<sup>&</sup>lt;sup>2</sup> 59 FR 18688 et seq.

The Policy includes three major activities required of municipalities with CSO related permits:

- *System Characterization* The identification of current combined sewer system assets and current performance characteristics;
- Implementation of the Nine Minimum Controls<sup>4</sup> identified in the Policy to ensure that the current combined sewer system is being optimized and property maintained; and
- Development of a Long-Term Control Plan (LTCP) The analysis and selection of long term capital and institutional improvements to the combined sewer system that once fully implemented will result in compliance with the CWA.

The Policy includes provisions for public and stakeholder involvement (e.g. the CSO Supplemental Committees), the assessment of affordability (rate-payer impacts) and financial capability (permittee ability to finance the long-term controls) as a driver of implementation schedules and two CSO control alternatives. The "presumption" approach is premised on the presumption that the achievement of certain performance standards, e.g. no more than an average of four overflow events per year; or the elimination or capture of at least 85% by volume of the combined sewage collected in the CSS during precipitation events; or the elimination or removal of no less than the mass of the pollutants for the volumes that would be eliminated or captured, would result in CWA compliance subject to post-implementation verification. Under the "demonstration" approach, permittees demonstrate that their proposed controls do not preclude the attainment of water quality standards.

The Policy includes regulations for the collection of water quality data required of municipalities with CSO related permits. Section II.C.1 of the CSO Control Policy "Characterization, Monitoring and Modeling of the Combined Sewer System" states:

"In order to design a CSO control plan to adequately meet the requirements of the CWA, a permittee should have a thorough understanding of its sewer system, the response of the system to various precipitation events, the characteristics of the overflows, and the water quality impacts that result from CSOs. The permittee should adequately characterize through monitoring, modeling, and other means as appropriate, for a range of storm events, the response of its sewer system to wet weather events including the number, location and frequency of CSOs volume, concentration and mass of pollutants discharged and the impacts of the CSOs on the receiving waters and their designated uses."

<sup>&</sup>lt;sup>4</sup> The nine minimum controls include: 1) proper operation and regular maintenance; 2) maximizing the use of the collection system for storage where feasible; 3) review and modification of the Industrial Pretreatment Program to minimize CSO impacts; 4) maximization of flow to the wastewater treatment plant; 5) the prohibition of CSOs during dry weather; 6) control of solids and floatables (addressed by NJDEP's requirement of screening or other facilities in the late 2000s); 7) pollution prevention; 8) public notification; and 9) monitoring CSO impacts and controls. 59 FR 18691.



The CSO Control Policy states that the major elements of a sewer system characterization include:

# Rainfall Records

"The permittee should examine the complete rainfall record for the geographic area of its existing CSS using sound statistical procedures and best available data. The permittee should evaluate flow variations in the receiving water body to correlate between CSOs and receiving water conditions."

#### **Combined Sewer System Characterization**

"The permittee should evaluate the nature and extent of its sewer system through evaluation of available sewer system records, field inspections and other activities necessary to understand the number, location and frequency of overflows and their location relative to sensitive areas and to pollution sources in the collection system, such as indirect significant industrial users."

# **CSO** Monitoring

"The permittee should develop a comprehensive, representative monitoring program that measures the frequency, duration, flow rate, volume and pollutant concentration of CSO discharges and assesses the impact of the CSOs on the receiving waters."

#### Modeling

"Modeling of a sewer system is recognized as a valuable tool for predicting sewer system response to various wet weather events and assessing water quality impacts when evaluating different control strategies and alternatives. EPA supports the proper and effective use of models, where appropriate, in the evaluation of the nine minimum controls and the development of the long-term CSO control plan."

# **B.2.3 USEPA CSO Guidelines**

The data collection, analyses and this characterization report were written and conducted in conformance with the applicable USEPA guidance documents as shown in **Table B-3**.

|   | Title                                                            | Date | Document Number  |
|---|------------------------------------------------------------------|------|------------------|
| 1 | Combined Sewer Overflows Guidance for Long-<br>Term Control Plan | 1995 | EPA 832-B-95-002 |
| 2 | Combined Sewer Overflows Guidance for Screening and Ranking      | 1995 | EPA 832-B-95-004 |
| 3 | CSO Post Construction Compliance Monitoring<br>Guidance          | 2011 | EPA-833-K-001    |

# Table B-3: USEPA Guidance Documents Used in the Preparation of the System Characterization Report



|    | Title                                                                              | Date | Document Number  |
|----|------------------------------------------------------------------------------------|------|------------------|
| 4  | Guidance for Quality Assurance Project Plans                                       | 2002 | EPA/240/R-02/009 |
| 5  | Guidance: Coordinating CSO Long-Term Planning with Water Quality Standards Reviews | 2001 | EPA-833-R-01-002 |
| 6  | Manual: Combined Sewer Overflow Control                                            | 1993 | EPA/625/R-83-007 |
| 7  | NPDES Permit Writer's Manual                                                       | 2010 | EPA-833-K-10-001 |
| 8  | Sewer System Infrastructure Analysis & Rehabilitation                              | 1991 | EPA/625/6-91-030 |
| 9  | Water Quality Standards Handbook: Second Edition                                   | 1994 | EPA 823-B-94-005 |
| 10 | Water Quality Standards Handbook: Second Edition                                   | 2007 |                  |

#### B.2.4 NJ Integrated Water Quality Monitoring and Assessment Report (303(d) list)

Section 303(d) of the federal Clean Water Act or "CWA" (33 USC § 1251 et seq.) requires each state to identify those waters for which effluent limitations are not stringent enough to attain applicable water quality standards; establish a priority ranking for such waters based on extent of water quality impairment and designated use non-support; establish a total maximum daily load (TMDL) for each pollutant causing water quality impairment, based on their priority ranking, at a level necessary to attain applicable water quality standards; and submit a list to USEPA of all impaired waters and their pollutant causes (i.e., the 303(d) List).

The New Jersey Department of Environmental Protection (NJDEP) has established the 2014 New Jersey Integrated Water Quality Assessment Report. The primary source of information regarding causes of impairment, and the Total Maximum Daily Load (TMDL) status of the water bodies (if any) is the 2014 New Jersey Integrated Water Quality Assessment Report, which satisfies New Jersey's requirement of both Section 303(d) and 305(b) of the Clean Water Act (CWA). The NJDEP Website explains the categories as shown in **Table B-4**.

| Sublist   | Component                                                                                                                                                                                                     |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sublist 1 | An assessment unit is fully supporting all applicable designated uses and<br>no uses are threatened. (The Department does not include the fish<br>consumption use for determining placement on this sublist.) |
| Sublist 2 | The assessment unit is fully supporting the designated use but is not supporting all applicable designated use(s).                                                                                            |
| Sublist 3 | Insufficient data and information are available to determine if the designated use is fully supported.                                                                                                        |
| Sublist 4 | One or more designated uses are not supported or are threatened but<br>TMDL development is not required because of one of the following<br>reasons:                                                           |

| Table B-4:            | <b>Components of New</b> | Jersev's Integrated | List of Water | (Integrated List) |
|-----------------------|--------------------------|---------------------|---------------|-------------------|
| $I abic D^{-} \tau$ . | Components of field      | otisty sintegrated  | List of Water | (Integrated List) |



| Sublist    | Component                                                                                                                                                                                               |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sublist 4A | A TMDL has been completed for the parameter causing designated use non-support.                                                                                                                         |
| Sublist 4B | Other enforceable pollutant control measures are reasonably expected to result in fully supporting the designated use in the near future.                                                               |
| Sublist 4C | Non-support of the designated use is caused by something other than a pollutant.                                                                                                                        |
| Sublist 5  | One or more designated uses are not supported or are threatened by a pollutant(s) that requires development of a TMDL.                                                                                  |
| Sublist 5A | Arsenic does not attain standards, but concentration are below those demonstrated to be from naturally occurring conditions.                                                                            |
| Sublist 5L | Designated use impairment is caused by a "legacy" pollutant that is no longer actively discharged by a point source.                                                                                    |
| Sublist 5R | Water quality impairment is not effectively addressed by a TMDL, such as nonpoint source pollution that will be controlled under an approved watershed restoration plan or 319(h) Watershed Based Plan. |

The Sublist 5 list constitutes the Section 303(d) list that the USEPA will approve or disapprove under the CWA. For the purposes of the determination of Pollutants of Concern, Sublists 4A and 5 are the relevant categories as they indicate the need for a TMDL in the receiving water body and the limiting of additional loadings for those parameters.

#### **B.2.5** Interstate Environmental Commission Requirements

With the exception of the City of Paterson, the municipalities and authorities covered by this System Characterization Report fall within the jurisdiction of the Interstate Environmental Commission (IEC). The Interstate Environmental Commission (IEC) is a tri-state air and water pollution control agency serving the states of New York, New Jersey, and Connecticut. The Commission and its area of jurisdiction were established in 1936 under a instate compact, with the consent of Congress. The IEC establishes the receiving stream water quality standards to which NJPDES permittees are subject under the federal Clean Water Act<sup>5</sup> and the New Jersey Water Pollution Control Act.<sup>6</sup>

The IEC has specified two classes of waters:7

*Class A Waters* - Class A waters are suitable for all forms of primary and secondary contact recreation and for fish propagation, including shellfish harvesting in designated areas. There are no Class A waters within the receiving waters of the PVSC combined sewered municipalities.

Class B Waters - IEC identified two sub-classes:

• Class B-1 – the IEC water quality standards specify that Class B-1 waters remain "Suitable for fishing and secondary contact recreation. They shall be suitable for the

<sup>&</sup>lt;sup>5</sup> 33 U.S.C. Chapter 26

<sup>&</sup>lt;sup>6</sup> N.J.S.A 58:10A-1 et seq.

<sup>&</sup>lt;sup>7</sup> Source: IEC website: http://www.iec-nynjct.org/wq.regulations.htm

growth and maintenance of fish life and other forms of marine life naturally occurring therein, but may not be suitable for fish propagation."

Class B-2 – the IEC water quality standards specify that Class B-2 waters remain:
 "Suitable for passage of anadromous fish and for the maintenance of fish life in a manner consistent with the criteria established by the general regulations."

The IEC water quality standard classification zones applicable to the PVSC combined sewered municipalities are shown on **Figure B-1**.

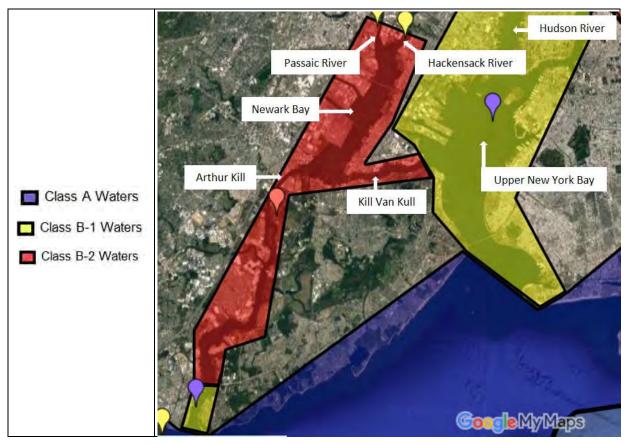



Figure B-1: Interstate Environmental Commission Water Quality Classifications

As shown on **Figure B-1**, the mouth of the Passaic River, the mouth of the Hackensack River, Newark Bay and the Kill Van Kull are classified as B-2 waters and the Upper Bay (Hudson River) is classified as B-1. Water quality standards applicable to Class B-1 and Class B-2 waters relevant to CSO discharges are provided in **Table B-5** below.

| Water Quality Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Dissolved Oxygen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Class B-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ≥ 4 milligrams per liter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Class B-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ≥ 5 milligrams per liter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Classes B-1 & B-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Further, all sewage or other polluting matter discharged or<br>permitted to flow into waters of the District shall first have been so<br>treated as to effect a reduction in the oxygen demand of the<br>effluent sufficient to maintain the applicable dissolved oxygen<br>requirement in the waters of the District and also maintain the<br>dissolved oxygen content in the general vicinity of the point of<br>discharge of the sewage or other polluting matter into those<br>waters, at a depth of about five feet below the surface. |  |
| <ul> <li>Example 100 per 100 ml on a 30 consecutive day geometric average</li> <li>400 per 100 ml on a 7 consecutive day geometric average</li> <li>800 per 100 ml on a 6 consecutive hour geometric average</li> <li>no sample may contain more than 2400 per 100 ml.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| General Requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| <ul> <li>All waters of the Interstate Environmental District (whether of Class A, Class B, or any subclass<br/>thereof) shall be of such quality and condition that they will be free from floating solids, settleable<br/>solids, oil, grease, sludge deposits, color or turbidity to the extent that none of the foregoing shall<br/>be noticeable in the water or deposited along the shore or on aquatic substrata in quantities<br/>detrimental to the natural biota; nor shall any of the foregoing be present in quantities that would<br/>render the waters in question unsuitable for use in accordance with their respective<br/>classifications.</li> </ul> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| <ul> <li>No toxic or deleterious substances shall be present, either alone or in combination with other<br/>substances, in such concentrations as to be detrimental to fish or inhibit their natural migration or<br/>that will be offensive to humans or which would produce offensive tastes or odors or be<br/>unhealthful in biota used for human consumption.</li> </ul>                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| • No sewage or other polluting matters shall be discharged, permitted to flow into, be placed in, or permitted to fall or move into the waters of the District, except in conformity with these regulations.                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |

# Table B-5: IEC Water Quality Standards for IEC Class B Waters

The IEC website states:

"An effluent discharge which does not satisfy the requirements of the Commission shall not be considered to be in violation thereof if caused by temporary excess flows due to storm water conveyed to treatment plants through combined sewer systems, provided that the discharger is operating the facility with reasonable care, maintenance, and efficiency and has acted and continues to act with due diligence and speed to correct the condition resulting from the storm water flow.



Unless there has been rainfall in greater than trace amounts or significant melting of frozen precipitation during the immediately preceding 24 hours, no discharges to the waters of the Interstate Environmental District shall occur from combined sewer regulating devices."

Additional information relating to the applicable water quality standards and the current use attainment status of the receiving waters is provided in Section F of this report.

# **B.2.6** New Jersey Administrative Code

New Jersey Administrative Code (NJAC) Section 7:9B Surface Water Quality Standards lists the classifications, designated uses, and water quality criteria for all New Jersey water bodies. The classification and water quality standards for the CSO receiving waters within the PVSC CSO Sewer District are shown in **Table B-6** below.

# Table B-6: The NJ Administrative Code Classifications of PVSC Sewer DistrictCSO Receiving Waters

| Waterbody           | Reach                                                                | Classification |
|---------------------|----------------------------------------------------------------------|----------------|
|                     | Paterson - Outlet of Osborn<br>Pond to Dundee Lake dam               | FW2-NT         |
| Passaic River       | Little Falls - Dundee Lake<br>dam to confluence with<br>Second River | FW2-NT/SE2     |
|                     | Newark (@ Second River)                                              | SE3            |
| Hackensack<br>River | Kearny Point                                                         | SE3            |
| Hudson River        | Englewood Cliffs                                                     | SE2            |
| Kill Van Kull       | Kill Van Kull                                                        | SE3            |
| Newark Bay          | Newark Bay                                                           | SE3            |

| Classification         | Designated Use(s)                                                                                                                                                                                                     | Indicator Bacteria | Criteria (per 100 ml) |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------|
|                        | <ol> <li>Maintenance, migration and<br/>propagation of the natural and<br/>established biota;</li> </ol>                                                                                                              |                    | 126 GM, 235 SSM       |
|                        | 2. Primary contact recreation;                                                                                                                                                                                        | E. Coli            |                       |
| FW2-NT<br>(Fresh Water | 3. Industrial and agricultural water supply;                                                                                                                                                                          |                    |                       |
| Non Trout)             | 4. Public potable water supply<br>after conventional filtration<br>treatment (a series of processes<br>including filtration, flocculation,<br>coagulation, and sedimentation,<br>resulting in substantial particulate |                    |                       |

#### Passaic Valley Sewerage Commission Service Area System Characterization Report

| Classification        | Designated Use(s)                                                                                                                                                                      | Indicator Bacteria | Criteria (per 100 ml) |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------|
|                       | removal but no consistent<br>removal of chemical constituents)<br>and disinfection; and                                                                                                |                    |                       |
|                       | 5. Any other reasonable uses.                                                                                                                                                          |                    |                       |
|                       | <ol> <li>Maintenance, migration and<br/>propagation of the natural and<br/>established biota;</li> </ol>                                                                               |                    | 770 GM                |
| SE2                   | 2. Migration of diadromous fish;                                                                                                                                                       |                    |                       |
| (Saline Water)        | 3. Maintenance of wildlife;                                                                                                                                                            | Fecal Coliform     |                       |
|                       | 4. Secondary contact recreation; and                                                                                                                                                   |                    |                       |
|                       | 5. Any other reasonable uses.                                                                                                                                                          |                    |                       |
| SE3<br>(Saline Water) | <ol> <li>Secondary contact recreation;</li> <li>Maintenance and migration of<br/>fish populations;</li> <li>Migration of diadromous fish;</li> <li>Maintenance of wildlife;</li> </ol> | Fecal Coliform     | 1500 GM               |
|                       | 5. Any other reasonable uses.                                                                                                                                                          |                    |                       |

\* "The geometric mean shall be calculated using a minimum of five samples collected over a thirty-day period"

A map showing the NJAC classifications for all of the waterbodies is found below as **Figure B-2**.





Figure B-2: NJAC Classifications of PVSC Sewer District Waterbodies



# SECTION C - OVERVIEW OF WASTEWATER TREATMENT FACILITIES AND SERVICE AREAS

#### C.1 WASTEWATER TREATMENT FACILITIES

#### Passaic Valley Sewerage Commission

PVSC owns and operates a 330 million gallons per day (MGD) WRRF that covers approximately 142 acres and is located in an industrial area of Newark, NJ. A detailed schematic of the PVSC Service Area can be seen in **Figure C-1**.

The PVSC Facility receives flow from three sources: the Main Interceptor Sewer, the South Side Interceptor, and flow from Hudson County. The Main Interceptor is approximately 22 miles long and is routed from the City of Patterson in Passaic County to the WRRF in the City of Newark in Essex County, generally following the west bank of the Passaic River. The South Side Interceptor is approximately six (6) miles long and is located entirely within the City of Newark. The Main and South Side Interceptor's direct flow to the Headworks that includes a channelized Forebay that divides flow between six (6) grit channels. Wastewater is screened and degritted and moved through an effluent channel to the Influent Pumping Station. Flow is then lifted by six (6) Archimedes screw pumps to Primary Clarifiers. The Hudson County flow, which includes flow from the cities of Jersey City, Bayonne, North Bergen and South Kearny, enters the plant downstream of the Forebay just before the Primary Clarifiers. The combined flows then enter secondary treatment consisting of Aeration Tanks which utilize a pure oxygen activated sludge process and Final Clarifiers. Treated wastewater is disinfected with sodium hypochlorite as it enters the Effluent Pumping Station and is pumped to one of two outfalls. The main outfall discharges to Upper New York Bay, and flow in excess of the capacity of the main outfall flows to a chlorine contact tank prior to reaching the Newark Bay secondary outfall

Solids Treatment at the WRRF takes primary sludge from the Primary Clarifiers and Waste Sludge from the Aeration Tanks and transports them to gravity Sludge Thickeners. Thickened sludge then enters the Thickening Centrifuges to reduce its liquid volume. A wet-air oxidation process, known as Zimpro, conditions the sludge for dewatering before it is further reduced in volume in Decant Tanks. Sludge enters the final processing steps in filter presses and storage in cake silos prior to beneficial use.

#### North Bergen Municipal Utilities Authority

The North Bergen Township MUA owned and operated a small wastewater treatment plant called the Central Treatment Plant until its closure in October of 2010. The Central Treatment Plant was replaced with the Central Pump Station. The Township's wastewater from the original service area of the Central Treatment Plant, about 7 MGD, is now pumped to JCMUA's collection system for treatment at the PVSC WRRF. The remainder of the Township's wastewater that is generated outside of the service area of the Central Treatment Plant (STP). The NBMUA also owns and operates the Woodcliff Sewage Treatment Plant (STP) and hold a separate NJPDES permitted for this plant discharge. The Woodcliff STP plant receives flow from the northeastern portion of North Bergen service area, and from the Town of Guttenberg. Approximately 3 MGD is treated at the



Woodcliff Sewage Treatment Plant (STP) in North Bergen and discharged into the Hudson River. Details regarding the NBMUA Woodcliff STP and its service area can be found in the report titled *Service Area System Characterization Report: NBMUA Woodcliff STP and Guttenberg (WCGB), dated June 2018.* 

# C.2 PVSC SEWER DISTRICT SERVICE AREA

The PVSC Sewer District service area is comprised of combined sewer areas and separate sewer areas that contribute flow to the PVSC WRRF. The combined sewer areas include several different municipalities who own and operate the CSSs and the combined sewer outfalls located within their jurisdiction. Separate sewer areas comprise the majority of the drainage area but only contributes approximately 40 percent of the flow to the PVSC WRRF. **Figure C-1** shows the municipalities and the type of sewer network they operate.

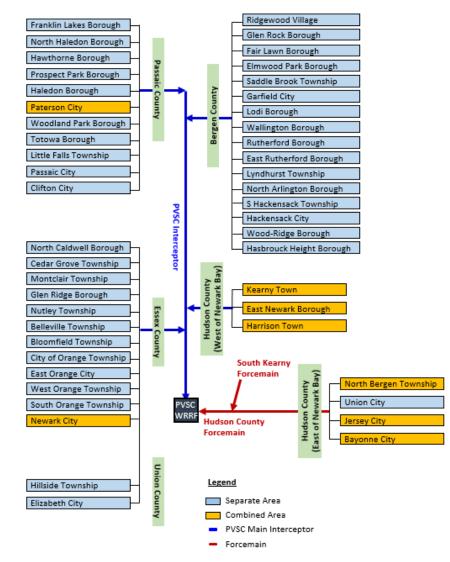



Figure C-1: PVSC Municipalities

# C.2.1 Combined Sewer Service Area

Combined sewers, which serve eight of the municipalities within the PVSC Sewer District and collect surface runoff from the combined sewer service area. The total combined area is approximately 22,099 acres and makes up approximately 26 percent of the Total Contributing Area. The eight municipalities, their service area acreage and the number of CSO outfalls are listed in **Table C-1** below. All eight municipalities are authorized to discharge under their respective NJPDES Permits for Combined Sewer Management. PVSC does not own or operate any combined sewer outfalls. PVSC owns and operates CSO Facilities such as regulators, and netting facilities but the combined sewer outfalls are owned by other permittees.

| Municipality                           | Contributing area (acres) |                  | Total<br>Contributing        | Number of CSOs<br>Located within |  |
|----------------------------------------|---------------------------|------------------|------------------------------|----------------------------------|--|
| Municipanty                            | Combined                  | Separate & Storm | Area<br>(acres) <sup>1</sup> | Service Area                     |  |
| Bayonne City                           | 1,706                     | 36               | 1,742                        | 28                               |  |
| East Newark<br>Borough                 | 62                        | 0                | 62                           | 1                                |  |
| Harrison Town <sup>2</sup>             | 423                       | 354              | 771                          | 6                                |  |
| Jersey City <sup>3</sup>               | 5,365                     |                  | 5,365                        | 21                               |  |
| Kearny Town                            | 1,243                     | 2,763            | 4,006                        | 5                                |  |
| Newark City                            | 7,153                     | 2,883            | 10,036                       | 18                               |  |
| North Bergen<br>MUA <sup>₄</sup>       | 1,552                     | 39               | 1,591                        | 9                                |  |
| Paterson City                          | 4,595                     | 600              | 5,195                        | 23                               |  |
| Subtotal                               | 22,099                    | 6,675            | 28,774                       | 111                              |  |
| 40 Separate<br>Sanitary<br>Communities |                           | 55,214           | 55,214                       |                                  |  |
| Total                                  | 22,099                    | 61,889           | 83,988                       | 111                              |  |

#### Table C-1: Combined and Separate Sewer Service Area Municipalities

Note:

1. The total acreage in the table above includes only the subcatchment areas in the model that contribute flow to the PVSC WRRF. The acreage does not include rivers, creeks or unsewered areas within a municipality.

- 2. Harrison's NJPDES permit currently includes 7 outfalls. NJDEP will be issuing Harrison a minor modification NJPDES permit action to remove Dey Street outfall 004A in the near future.
- 3. Jersey City will provide details of this information separately as part of its System Characterization Report.

4. NBMUA (Woodcliff) and Guttenberg will provide this information separately as part of its System Characterization Report.



The combined sewer municipalities on the east side of Newark Bay include the Cities of Jersey City and Bayonne, and the Township of North Bergen. These municipalities deliver their combined sewage through the Hudson County force main into the PVSC primary clarifiers at the PVSC WRRF. Two of the combined sewer municipalities, the City of Bayonne and Jersey City MUA, own their own CSSs, interceptors, CSO control facilities, and pumping stations. Bayonne and Jersey City jointly own the force main used to transport wastewater from the CSO area east of the Newark Bay in Hudson County, to the primary clarifiers at the PVSC WRRF in Newark. PVSC does not own or operate any of the combined sewer overflow control or transportation facilities which service this section of the District. Jersey City MUA is included in the above description, however it will submit its own System Characterization report separately.

The other five municipalities with CSSs are located on the west side of Newark Bay include the Borough of East Newark, the Towns of Harrison and Kearny, and the Cities of Newark and Paterson. These municipalities all own and operate their CSS and permitted by the NJDEP to discharge CSOs. All of these municipalities are tributary to the PVSC Main Interceptor. A portion of the CSSs are tributary to CSO control facilities owned and/or operated by the individual Permittees/Municipalities and a portion of the CSO control facilities are owned and/or operated by PVSC. PVSC owns and operates 45 of the regulator chambers in these communities that control the sewer flow to the PVSC trunk system.

These combined sewer municipalities collectively own and operate a total of 111 CSO outfalls in PVSC's existing Service Area, which ultimately discharge to the waterbodies shown in **Figure C-2**.

# City of Bayonne

The City of Bayonne is located in Hudson County and has an approximate population of 63,024 (2010 US Census Bureau). The City is located on a peninsula within the New Jersey – New York Metropolitan Area. It is surrounded by Jersey City to the North, Newark Bay to the west, Kill Van Kull Channel to the south, and the Upper New York Bay, which separates it from the Borough of Manhattan, to the east. The City consist of a land area of approximately 3,200 acres of which approximately 1,742 acres are serviced by the combined sewer system.

The industrial section on the East side of the City at Constable Hook, is serviced primarily by a separate sewer system. Wastewater flows from the City of Bayonne, the Town of Kearny and Jersey City are conveyed to the Passaic Valley Sewerage Commissioners (PVSC) by a force main owned partially by PVSC and jointly by the City of Bayonne and the Jersey City MUA. The flow from the force main enters directly into the primary treatment facility at the PVSC WRRF. Under the current service agreement, wastewater flows from the City of Bayonne are restricted to an average daily flow of 11 MGD and a Peak flow of 17.6 MGD. The City of Bayonne entered into a forty (40) year agreement with United Water, now SUEZ, for operations and maintenance of the City's water and wastewater collection and transport facilities in December 2012. The Bayonne MUA was dissolved in 2016 as a result of this new agreement with United Water.



# Township of North Bergen

The Township of North Bergen is located in Hudson County and has an approximate population of 60,773 (2010 US Census Bureau). The Township is located between the Hackensack and Hudson Rivers, and is bordered by Ridgefield, Cliffside Park, Secaucus, Guttenberg, Union City and Jersey City. The total area of the Township is approximately 2,060-acres, where approximately 1,130 acres is serviced by the CSS and the balance is serviced by separate systems for sanitary and storm flows.

North Bergen consists of two combined sewer areas, Central and Woodcliff area. North Bergen Township owns and operates the manholes and sewer systems in both of these areas. The North Bergen Municipal Utilities Authority (MUA) owns and operates the regulators, interceptors, outfalls, CSO facilities and the Woodcliff STP under two separate NJPDES permits; NBMUA and NBMUA (Woodcliff). The largest combined sewer area is located in the central and western portions of the Township of North Bergen. The combined sewage in the Central/ Western section of North Bergen Township is conveyed via a pump station and force main to the Jersey City MUA where the flow is then pumped to PVSC's WRRF via the Hudson County force main. The second combined sewer area is generally located on the northeast side of North Bergen, to the east of Bergenline Avenue, and is connected to the North Bergen MUA's Woodcliff STP. The Woodcliff STP service area is separate from the PVSC service area and is covered in a separate System Characterization Report.

# **Borough of East Newark**

East Newark is located in the western section of Hudson County and has an approximate population of 2,406 (2010 US Census Bureau). The Borough is bounded by the Passaic River and Newark to the west, the Town of Harrison on the southeast and the Town of Kearny on the northeast. The Borough encompasses approximately 72.5-acres and its land use is varied. East Newark mainly consists of high density residential and industrial areas primarily located along the Passaic River. According to the Service Area Drainage and Land Use Report prepared by Killam Associates in February of 1996 the municipality consists of 58% of industrial and 42 % of residential. Impervious surfaces (such as rooftops, driveways, parking lots, and roadways) encompass roughly 77% percent of the Borough.

# Town of Harrison

The Town of Harrison is located in Hudson County and has an approximate population of 13,620 (2010 US Census Bureau). The Town is bounded by the Town of Kearny and the Borough of East Newark to the north and the Passaic River to the south. Harrison comprises an area of approximately 1.3 square miles.

# Town of Kearny

The Town of Kearny is located in the northwest corner of Hudson County and has an approximate population of 40,684 (2010 US Census Bureau). Kearny is bounded by the Hackensack River and Jersey City on the east, East Newark and Harrison on the south, the Passaic River and Belleville on the west, and North Arlington on the north.



The total area of Kearny is approximately 10.19 square miles, of which 9.14 sq. mi. is land area and 1.05 sq. mi is water area. The 9.14 square miles within the Town's boundaries are divided into three- (3) broad sections, referred to locally as the "Uplands", the "Hackensack Meadowlands" and "South Kearny". Of the total land area, an estimated 21% is residential and commercial and 20% is industrial. The Hackensack Meadowlands area covers approximately 59%, or 5.5 square miles, of the Town's land area.

# City of Newark

The City of Newark is located in Essex County and has a approximate population of 277,140 (2010 US Census Bureau). The City is situated to the west of the Passaic River and Newark Bay, and to the north of the Peripheral Ditch which flows into the Elizabeth Channel of Newark Bay. The City covers an area of approximately 24 square miles and presently owns and maintains approximately 298 miles of sanitary and combined sewers. The City is mostly served by the Passaic Valley Sewerage Commissioners with approximately 5% of the city served by the Joint Meeting of Union and Essex Counties.

# City of Paterson

The City of Paterson is located within Passaic County and has an approximate population of 146,199 (2010 US Census Bureau). The City is bounded on the west by the Boroughs of West Paterson and Totowa, on the north by the Passaic River and the Boroughs of Haledon and Prospect Park, on the east by the Passaic River and the Boroughs of Elmwood Park and Fairlawn, and the south by the City of Clifton. The City consists of approximately 5,290 acres.

#### C.2.2 Separate Sewer Service Area

In addition to the municipalities with combined systems, separately sewered municipalities convey their flow to the Main Interceptor Sewer through 13 branch intercepting sewers and various direct sewer connections. Forty of the 48 municipalities in the service area have separate sewer systems (does not include storm water), and, therefore, do not own or operate any CSOs. Separate sewer systems make up 61,889 acres of the PVSC service area which is approximately 74 percent of the Total Contributing Area. In all but one municipality with a separate sewer system, sewage discharges to the PVSC Main Interceptor and is conveyed to the PVSC WRRF via this interceptor; Union City's sewage flow is conveyed through the Hudson County Force Main and is discharged upstream of the Primary Clarifiers at the PVSC WRRF. See **Table C-1** above for details regarding separate and combined sewer area.

The following Passaic County towns and boroughs listed in **Table C-2** below contribute separate sewage flow to the PVSC WRRF through the Main Interceptor.



#### Passaic Valley Sewerage Commission Service Area System Characterization Report

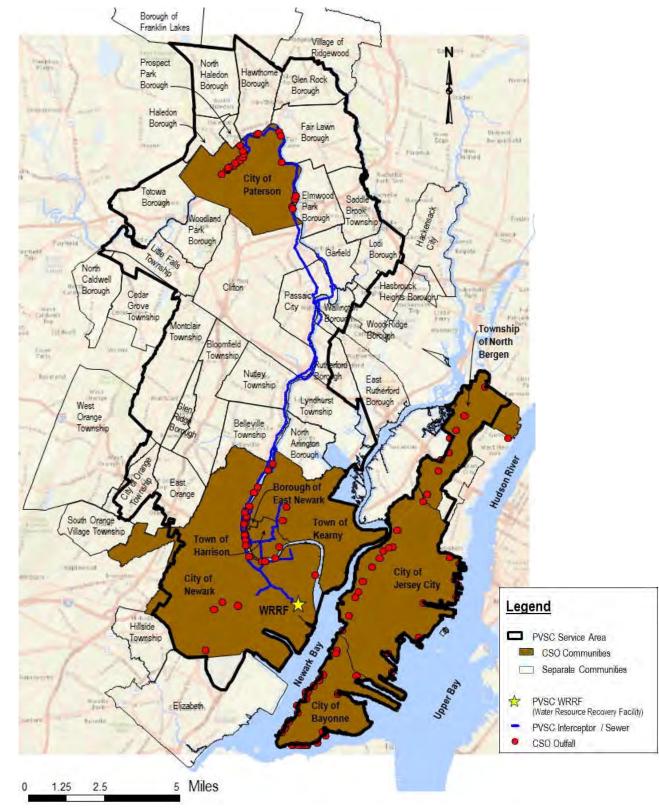



Figure C-2: PVSC Service Area with CSO Outfall Location

| Passaic County |                           |  |  |
|----------------|---------------------------|--|--|
| Franklin Lakes | Woodland Park             |  |  |
| North Haledon  | Totowa                    |  |  |
| Hawthorne      | Townships of Little Falls |  |  |
| Prospect Park  | Cities of Passaic         |  |  |
| Haledon        | Clifton City              |  |  |

| Table C-2: | Passaic Co  | ounty Separate | Sewer Areas |
|------------|-------------|----------------|-------------|
|            | I assait Co | unity Separate | Sever micas |

The following towns, boroughs and cities listed in **Table C-3** are located in Bergen County with separate sewage networks are generally located east of the Passaic River and drain into the PVSC Main Interceptor.

| Bergen County     |                   |  |  |
|-------------------|-------------------|--|--|
| Ridgewood Village | North Arlington   |  |  |
| Glen Rock         | Wood Ridge        |  |  |
| Fair Lawn         | Hasbrouck Heights |  |  |
| Elmwood Park      | Saddle Brook      |  |  |
| Lodi              | Lyndhurst         |  |  |
| Wallington        | South Hackensack  |  |  |
| Rutherford        | Hackensack        |  |  |
| East Rutherford   | Garfield          |  |  |

Table C-3: Bergen County Separate Sewer Areas

**Table C-4** lists the Essex County towns, boroughs and cities which are located towards the south end of the PVSC Main Interceptor and contribute separate sewage flow to the PVSC WRRF via the Main Interceptor.

| Essex County   |                     |  |  |
|----------------|---------------------|--|--|
| Montclair      | West Orange         |  |  |
| Nutley         | South Orange        |  |  |
| Belleville     | City of East Orange |  |  |
| Bloomfield     | Glen Ridge Borough  |  |  |
| City of Orange | North Caldwell      |  |  |
| Cedar Grove    |                     |  |  |

**Table C-4: Essex County Separate Sewer Areas** 



The township and city listed in **Table C-5** are in Union County and are located towards the south end of the PVSC Main Interceptor. They contribute separate sewage flow to the PVSC WRRF via the Main Interceptor.

#### Table C-5: Union County Separate Sewer Areas

| Union County      |                |  |
|-------------------|----------------|--|
| Hillside Township | Elizabeth City |  |

Union City is the only separate sewerage municipality located in Hudson County and contributes flow directly to the WRRF through the Hudson County Forcemain.

Most CSO Communities have both separate sewer sections and combined sewer areas. The contributing separate sanitary sewer system area for each CSO community is shown in Table C-1. A portion of the City of Bayonne includes a separate sewer system, which serves a small industrial area. Sewage is conveyed separately in the area between Pulaski Street and Constable Hook along the Hudson River and is discharged directly to the Eastern Interceptor Sewer. All wastewater within the City flows to the City of Bayonne Oak Street Pumping Station, which transports wastewater to the PVSC WRRF.



# SECTION D - CHARACTERISTICS OF THE COMBINED SEWER SYSTEM

#### **D.1** SOURCES OF COLLECTION SYSTEM DATA

In order to characterize the CSS in the PVSC Service Area, the following previous reports were reviewed and utilized as sources of collection system data:

- North Bergen MUA CSO Characterization Study (March 2005)
- Bayonne Municipal Utilities Authority Facilities Inventory and Assessment Analysis (Sep 2013)
- Bayonne Municipal Utilities Authority CSO Discharge Characterization Report (Nov 2005)
- Bayonne Municipal Utilities Authority CSO LTCP Vol 1 Cost & Performance Analysis Report (Mar 2007)
- PVSC Report on Maximization Flows to WWTP (Oct 2003)
- PVSC Maximization of Wastewater to PVSC (Dec 1996)
- PVSC CSO Modeling Study (Feb 2004)
- PVSC CSO LTCP Vol 1 Cost & Performance Analysis Report March 2007-HMM

# **D.2** CHARACTERISTICS OF COMBINED SEWER SYSTEM

#### **D.2.1** Description of CSO System

PVSC's sewer system consists of approximately 25 miles of intercepting sewers, eleven (11) branch interceptors with a total length of approximately 13 miles, thirteen (13) lateral sewers, river crossings, regulators, metering equipment, manholes and two (2) pump stations. Flow to the treatment facility is conveyed via two (2) primary interceptors and one primary force main: the Main Interceptor, the South Side Interceptor and the Hudson County Force Main. There are about 2,000 miles of lateral sewers which are owned by the various contributing municipalities which connect to the PVSC Main Interceptor.

The following is a basic summary of the Combined Sewer System Characterization Records submitted to NJDEP on July 1, 2016.

# City of Bayonne

Bayonne's combined sewer system consists of approximately 81 miles of pipe with diameters generally ranging from 6 to 84 inches.

#### Town of North Bergen

North Bergen's combined sewer system consists of approximately 59 miles of pipe with diameters generally ranging from 4 to 30 inches.

#### Borough of East Newark

East Newark's combined sewer system consists of approximately 2 miles of pipe with diameters generally ranging from 8 to 48 inches.



# Town of Harrison

Harrison's combined sewer system consists of approximately 17 miles of pipe with diameters generally ranging from 8 to 48 inches.

#### Town of Kearny

Kearny's combined sewer system consists of approximately 52 miles of pipe with diameters generally ranging from 6 to 30 inches.

# City of Newark

Newark's combined sewer system consists of approximately 520 miles of pipe with diameters generally ranging from 3 to 153 inches.

# City of Paterson

Paterson's combined sewer system consists of approximately 164 miles of pipe with diameters generally ranging from 8 to 84 inches.

# **D.2.2** Trunk Sewers

The PVSC service district includes over 1,000 miles of combined sewer gravity pipes and trunk sewers. These sewers are owned and maintained by the individual municipalities or authorities. Sewer data was collected from prior reports and GIS to develop and update the system inventory. Most of the pipe characteristics, including upstream and downstream nodes, dimension, shape, number of barrels, and flap gate information, were found or estimated from prior studies, record drawings, design drawings and sewer gravity main GIS shapefiles. If sewer main information was not available, sewer length was estimated in GIS geometry measurement. Manhole information, including invert and rim elevations, were found or estimated from record drawings, design drawings, and existing collection system models.

#### **D.2.3** Flow Diversion Structures and CSO Regulators

There are 59 active regulating chambers tributary to the PVSC interceptors: 27 in Paterson, 17 in Newark, 1 in East Newark, 6 in Harrison, and 8 in Kearny. These regulating chambers are equipped with sandcatcher chambers to collect grit prior to flow entering the flow regulating structure. Under dry weather flow conditions, the flow passes through the sandcatcher and is diverted to the regulator chamber through a regulator gate or an orifice and then to the interceptor. Under wet weather conditions, as the height of the wet weather flow rises in the regulator, it overflows the weir and the excess flow is diverted to the overflow chamber and discharged to the receiving waters as combined sewer overflow. Typically, a tide gate chamber is located between the receiving waters and sandcatcher chamber to prevent the backflow of extraneous river waters into the interceptor. As originally designed, the regulating gate was equipped with a float mechanism to regulate the wastewater flow to the interceptor based on the interceptor levels. However, over a period of time, all of these regulators have been converted to passive control or equipped with sluice gates controlled from the WRRF.

PVSC owns and operates a total of 43 regulators throughout the PVSC sewer service district. PVSC owns and operates all of the regulators in East Newark, Harrison, and Kearny, 12 total, 11



regulators in Newark and 20 regulators located in Paterson. Newark and Paterson own and operate the remaining regulators located in their service area. **Table D-1** below lists permittees, regulator owner / operator and the number of regulators within the permittee's service areas. Harrison recently separated the drainage area for the Dey Street CSO and removed the regulator and outfall from service. Harrison now has 6 CSO outfalls and regulators. NJDEP will be issuing a minor modification NJPDES permit action to remove Dey Street outfall 004A in the near future.

| Permittee         | Owner / Operator        | Number of<br>Regulators |
|-------------------|-------------------------|-------------------------|
| Bayonne*          | Bayonne - 18            | 18                      |
| East Newark       | PVSC - 1                | 1                       |
| Harrison**        | PVSC - 6                | 6                       |
| Kearny            | PVSC - 5                | 5                       |
| Newark            | PVSC – 11; Newark - 7   | 18                      |
| North Bergen MUA* | North Bergen - 33       | 33 (Central)            |
| Paterson          | PVSC – 20; Paterson - 7 | 27                      |
| Total             |                         | 108                     |

#### Table D-1: Permittees and Their Regulators

\* Do not contribute to the PVSC interceptors

\*\* Harrison's NJPDES permit currently reflects 7 Outfalls. NJDEP will be issuing Harrison a minor modification permit action to remove Dey Street Outfall 004A in the near future and they will remove equipment from regulator.

The City of Bayonne has over the years constructed a combined sewer overflow control facilities and relief sewer to provide hydraulic relief to the CSS. The City's combined sewer system currently includes 17 active regulator structures. The Bayonne regulating chambers do not include a sandcatcher chamber. Under dry weather flow conditions, flow is directed through an opening to the regulator valve and then to the interceptor. Under we weather conditions, when the height of the wet weather flow rises, it overflows the weir and excess flow is discharged to the receiving waters as a CSO. Typically, a tide gate chamber is located between the receiving waters and diversion chamber to prevent the backflow of extraneous river waters into the interceptor.

The North Bergen MUA has 33 active regulator structures in the central service area. All 33 regulating chambers drain to the Jersey City MUA sewer network. Of the thirty three regulators in the Central Area which is part of the PVSC service area, there are 8 dynamic and 25 static regulators. There are multiple regulators that serve single CSO outfalls. Categories of dynamic regulators include gate, float, gate/float, overflow and bar rack.

#### **D.2.4** Interceptors

The PVSC interceptor sewers consist of two interceptor systems: Main Interceptor Sewer and South Side Intercepting Sewer owned and operated by the City of Newark. For flow measurement purposes, the system has three Venturi meter chambers on the Main Interceptor.



All but four municipalities, Jersey City, Bayonne, North Bergen and the South Kearny section of Kearny, are serviced by the PVSC interceptor system as shown in **Figure A-2**.

A total of 11 branch interceptors convey flow to the Main Interceptor. The 11 branch Interceptors are approximately 14.6 miles long. Five of the branch interceptors service combined sewer areas and the remaining six service separately sewered areas. They are identified as follows:

Combined Sewer Area Branch Interceptors

- Lawrence Street Branch Interceptor
- Kearny-East Newark-Harrison Branch Interceptor
- Kearny-Harrison-Newark Branch Interceptor
- Brown Street Branch Intercepting Sewer

Separate Sewer Area Branch Interceptors

- Jabez Street Branch Intercepting Sewer
- Prospect Street Branch Intercepting Sewer
- Warren Street Branch Interceptor
- Garfield-Passaic-Wallington Branch Interceptor
- Rutherford-East Rutherford Branch Intercepting Sewer
- Rutherford-Lyndhurst Branch Intercepting Sewer
- Kearny-North Arlington Branch Interceptor

The City of Bayonne's combined sewer system has three major interceptor sewers: Westerly Interceptor Sewer, Easterly Interceptor Sewer and Southerly Interceptor Sewer.

Each of the interceptors is described in further detail below.

# Main Interceptor

The main intercepting sewer is approximately 112,000 feet long and extends from the Passaic Valley Sewerage Commissioners Sewage Treatment Facility in Newark to Prospect Street in Paterson. Between Newark and Paterson, the Main Interceptor connects to 11 branch interceptors, 13 lateral sewers, 2 pump stations (Wallington Pump Station at Passaic and Yantacaw Pump Station at Clifton), and a Main Pump Station and the union Outlet Joint Meeting Interceptor, which is jointly owned and operated by the municipalities of Montclair, Bloomfield and Glen Ridge. The system has 59 active regulators. The Main Interceptor generally follows the west bank of the Passaic River through Newark, Belleville, Nutley, Clifton, Passaic and Paterson. Flows enter the Main Interceptor from branch interceptors, regulators and local sewers, and are conveyed to the PVSC WRRF. There are a total of 257 manholes on the Main Interceptor, including the manholes of three Venturi meter chambers and two river siphons.



The Main Interceptor is constructed of poured in place concrete and its shape and size vary depending on location and construction methods (tunnel or open cut) employed in a given reach. At its downstream end in Newark, it is semi-elliptical and 12.5 ft. high, reducing to 10.5 ft. high semi-elliptical at the north Newark boundary. The Main Interceptor's slope varies from 0.0002 to 0.0003. The crossing under Second River at the Newark/Belleville boundary consists of two 7-ft. diameter siphons. At the siphon outlet, there is a Venturi meter chamber with three 36-inch diameter Venturi tubes and a bypass conduit. The siphon inlet is also a sand catcher chamber. At Academy Street in Belleville, the size of the Main Interceptor reduces to 10.0 ft. high semielliptical. Through Nutley, the Main Interceptor has a uniform 10-ft high semi-elliptical cross-section. The slope is 0.0003. At the northern boundary of Nutley, the Third River crossing consists of two 6.5-ft. diameter siphons. The siphon inlet is also a sand catcher chamber. Through the southern portion of Clifton, the sewer has a 9.0-ft. high semi-elliptical cross section, and a constant slope of 0.00035. An emergency by-pass is located in Clifton just north of Clifton-Nutley boundary at Yantacaw Street. Immediately upstream of the southern Passaic boundary, the flow passes through the Passaic Venturi Meter chamber which consists of two 36inch diameter Venturi tubes and a meter bypass conduit. In Passaic, the interceptor cross section varies from 9 ft. to 7.5 ft. semi-elliptical. Slopes vary from 0.00035 to 0.00042. Through the northern section of Clifton, the interceptor cross section varies from 7.5 ft. semielliptical, to 6.75 ft. circular and subsequently to 6.75 ft. semi-elliptical. Slopes vary from 0.00049 to 0.00042. At the Clifton-Paterson boundary, flow passes through the Paterson meter chamber at Market Street, which includes a single 36-inch diameter Venturi tube and a meter bypass pipe. Through its reach in Paterson to the end, on the western and southern banks of the Passaic River, the cross section of the Main Interceptor changes from 6.75 ft. semi-elliptical to 3.75 ft. circular. Slopes through the Paterson reach vary from 0.00042 to 0.00073.

#### South Side Interceptor

The South Side Interceptor carries wastewater from the south portions of the City of Newark to the PVSC WRRF in Newark. Constructed in the mid 1960's of reinforced concrete pipe, it is approximately 21,000 feet long and extends from the Main Interceptor just upstream of the head end of the Passaic Valley Sewerage Commissioners Sewage Treatment Plant on Wilson Avenue to Waverly Street Regulator in Newark. It is owned and operated by the City of Newark.

The interceptor transports flows from three regulators owned by the City of Newark, Peddie, Queen and Waverly Street Regulators. At the Main interceptor it is an 84-inch diameter pipe, changes to 66 inch diameter pipe upstream of Peddie Street regulator, and terminates as a 54inch diameter circular pipe between the Queen and Waverly Street regulators.

#### Lawrence Street Branch Interceptor

The Lawrence Street Branch Interceptor is approximately 2,839 feet long and extends from the Main Interceptor at the intersection of River and Lawrence Streets to the Northwest Street Regulator in Paterson. The interceptor generally follows Presidential Boulevard, Hudson Street, under the Passaic River onto Lawrence Street, to the intersection of River Street. Flows enter the interceptor through local sewers, the Northwest Street Regulator, Arch Street Regulator, Jefferson Street Regulator, Stout Street Regulator, North Straight Street Lateral Sewer, Hudson



Street Regulator and the Lawrence Street Regulator and are conveyed via a direct connection to the Main Interceptor just upstream of Manhole MI-239 as per the FIAA.

There are a total of 21 manholes on the Lawrence Street Branch Interceptor. The interceptor is constructed of poured in place concrete and is 30 inches in diameter at its upstream end. The size increases to 36-inch diameter at the intersection of Presidential Boulevard and Freeman Street. Its slope varies from 0.0009 to 0.00144.

# Kearny-East Newark-Harrison Branch Interceptor

The Kearny-East Newark-Harrison Branch Interceptor is approximately 8,948 feet long and extends from the Kearny-Harrison-Newark Branch Interceptor upstream of KHN-5 on Frank E. Rogers Blvd. in Harrison, to the Nairn Street Regulator in Kearny. The Kearny-East Newark-Harrison Branch Interceptor generally follows Essex Street, First Street, Bergen Street, Dey Street, Passaic Avenue and Nairn Avenue.

Flows enter the interceptor through the local sewers, the First Street Lateral Sewer, Bergen Street Lateral Sewer, Dey Street Regulator, Harrison Avenue Regulator, Cleveland Avenue Regulator, New Street Regulator, Central Avenue Regulator, Johnston Avenue Regulator, Marshall Street Regulator and the Nairn Avenue Regulator and are conveyed to the Kearny-Harrison-Newark Branch Interceptor upstream of KHN-5. Flows are metered at two separate locations along the route, the East Newark Meter Chamber and the Johnston Avenue Meter Chamber.

There are a total of 41 Manholes on the Kearny-East Newark-Harrison Branch Interceptor. The interceptor is an 18-inch diameter concrete encased vitrified clay pipe at its upstream end. The size increased to 24-inch diameter poured in place concrete pipe downstream of the Marshall Street Regulator. The pipe size increased again to 33 inches in diameter near the Johnston Avenue Regulator.

The final pipe size change tasks place upstream of the Central Avenue Regulator to 36 inches in diameter. Over the length of the interceptor, the slope varies from 0.00354 to 0.00075.

#### Kearny-Harrison-Newark Branch Interceptor

The Kearny-Harrison-Newark (KHN) Branch Interceptor is approximately 15,355 feet long and extends from the Main Interceptor at the intersection of Ferry Street and Van Buren Street to north of King Street on Schuyler Avenue in Kearny. The Kearny-Harrison-Newark Branch Interceptor generally follows Van Buren Street and Raymond Boulevard in Newark, South Fourth Street, Essex Street, 7th Street, Bergen Street, Manor Avenue, Ann Street, Worthington Avenue, Kingsland Avenue in Harrison and Hamilton Avenue and Schuyler Avenue in Kearny.

Flows enter the Kearny-Harrison-Newark Branch Interceptor from the Brown Street Branch Interceptor, Kearny-East Newark-Harrison Branch Interceptor, Bergen Street Lateral, Duke and Tappan Street Lateral, local Sewers and service connections and are conveyed to the Main Interceptor upstream of Manhole MI-15. Flows entering the Kearny-Harrison-Newark Branch Interceptor are regulated by five regulators: the Bergen Street Regulator, Worthington Avenue Regulator, Duke Street Regulator, Tappan Street Regulator and Ivy Street Regulator.



There are a total of 43 manholes on the Kearny-Harrison-Newark Branch Interceptor including the manholes of one combined sewer overflow chamber, one flume type meter chamber, and one venturi type meter chamber. Also included are the inlet and outlet siphon chamber manholes.

The Kearny-Harrison-Newark Branch Interceptor is constructed of poured in place concrete pipe. The downstream end of the pipe is 64 inches in diameter and has a slope of 0.0038. The pipe size reduces to 54-inch diameter at a slope of 0.00049 in the vicinity of Passaic Avenue. The interceptor crosses the Passaic River under the Jackson Street Bridge as a 48 inch circular siphon at a slope of 0.00066. Through the southern portion of Harrison, the pipe size is 56 inches in diameter at a slope of 0.00039 to upstream of the intersection with Kearny-East Newark-Harrison Branch Interceptor, where, the diameter changes to 48 inches at a varying slope of approximately 0.00054. At manhole KHN-19, the pipe size changes to 42-inch diameter at a slope of 0.00065 and changes again at Manhole KHN-26 to 36-inch diameter at a slope of 0.00118.

#### Brown Street Branch Intercepting Sewer

The Brown Street Branch Intercepting Sewer is approximately 6,867 feet long and extends from the Kearny-Harrison-Newark Branch Intercepting Sewer at the intersection of Van Buren Street and Raymond Boulevard to the inactive Brown Street Regulator in Newark. The Interceptor generally follows Raymond Boulevard, Passaic Avenue, Cornelia Street, Lister Street and Brown Street. Flows enter the interceptor through the local sewers, the Freeman Street Regulator and the Polk Street Regulator and are conveyed via a direct connection to the Kearny-Harrison-Newark Branch Interceptor between Manholes KHN-1 and KHN-2.

There are a total of 29 manholes on the Brown Street Branch Intercepting Sewer. The interceptor is constructed of poured in place concrete and is a 24-inch diameter circular pipe at its upstream end. Its size increases to 48 inch at Raymond Boulevard and Freeman Street. Its slope is 0.0014.

#### Jabez Street Branch Intercepting Sewer

The Jabez Street Branch Intercepting Sewer is approximately 3,340 feet long and extends from the Main Interceptor at the intersection of Jabez Street and Wilson Avenue to the South Bay Avenue Regulator in Newark. The South Bay Regulator is currently inactive. The interceptor generally follows Jabez Street, Backus Street and Wheeler Point Road to South Bay Avenue. Flows enter the Interceptor through the South Bay Street Regulator and local sewers and are conveyed through a direct connection to the Main Interceptor between MI-13 and MI-14.

There are a total of 4 manholes on the Jabez Street Branch Intercepting Sewer including one manhole of the South Bay Avenue Regulator.

The Interceptor is a 57-inch circular poured in place concrete pipe over its entire length. Its slope varies from 0.001 to 0.002733.



# Prospect Street Branch Intercepting Sewer

The Prospect Street Branch Intercepting Sewer is approximately 1,377 feet long and extends from the Main Interceptor at the intersection of River and Prospect Streets to the S.U.M. Park Regulator on Ryle Avenue in Paterson. The Interceptor generally follows the Passaic River in an easterly direction and crosses underneath the Passaic River by gravity. Flows enter the interceptor from the S.U.M. Park Regulator and local sewers and are conveyed to the Main Interceptor via a direct connection between MI-247 and MI-248.

There are a total of nine manholes on the Prospect Street Branch Intercepting sewer including manholes of the S.U.M. Park Regulator. The interceptor is a 16-inch diameter cast iron pipe at its upstream end, changes to a 24-inch x 16-inch elliptical concrete pipe before reaching its terminal size of 15 inches. Its slope varies from 0.0022 to 0.0080.

# Warren Street Branch Interceptor

The Warren Street Branch Intercepting Sewer is approximately 1,967 ft. long and extends from the Main Interceptor at the intersection of Warren and River Streets to the Short Street Regulator in Paterson. The interceptor generally follows the west bank of the Passaic River form Short Street to East Holsman Street. At East Holsman Street, the interceptor crosses under the Passaic River and follows Warren Street to the Main Interceptor. Flows enter the interceptor from the Short Street Regulator, Warren Street Regulator, Bergen Street Regulator and local sewers and are conveyed to the Main Interceptor at Manhole MI-234.

There are a total of 15 manholes on the Warren Street Branch Interceptor, including the regulator manholes. The interceptor is a 24-inch diameter poured in place concrete pipe from its upstream end to East Holsman Street. The siphon at East Holsman Street is an 18-inch diameter cast iron pipe. At the siphon outlet, the interceptor increases to its terminal size of 30 inches in diameter.

# Garfield-Passaic-Wallington Branch Interceptor

The Garfield-Passaic-Wallington (GPW) Branch Interceptor is approximately 12,387 feet long and extends from the Wallington Pumping Station in Passaic to the intersection of River Drive and Outwater Lane in Garfield. The interceptor generally follows Lester Avenue, Lodi Street, Eighth Street, Passaic Street, Tenth Street and River Drive. Flows enter the interceptor through local sewers, the Passaic-Tail Race Regulator (inactive), Dundee Lateral Sewer, Passaic Street Lateral Sewer, Wall Street Lateral Sewer, and are conveyed via a direct connection to the Main Interceptor, 87 feet upstream of MI-122. Flows are metered at two locations along the route, Garfield Meter Chamber and the Lodi Street Meter Chamber.

There are a total of 54 manholes on the Garfield-Passaic-Wallington Branch Interceptor. The Interceptor is typically constructed of poured in place concrete. A small section is concrete encased vitrified clay pipe. The concrete encased vitrified clay pipe located at the upstream end is 18 inches in diameter with a slope of .00170.

The interceptor size and slope change to 27-inch diameter with a slope of 0.00110 at Manhole GPW-48. At Manhole GPW-44, the pipe size changes to 30-inch diameter at a slope of 0.0014. The pipe size changes to 33-inch diameter with a slope of 0.0010 at Manhole GPW-33. One



manhole upstream of the Garfield Meter Chamber, GPW-22, the pipe size changes to 36-inch diameter. At the outlet of the Garfield siphon, the pipe becomes 42 inches in diameter and continues at that size to Manhole GPW-10, where it changes to 48 inches. The slope is approximately 0.00085. The outlet pipe at the Lodi Meter Chamber is 54 inches in diameter at a slope of 0.00085 and terminates at the Wallington siphon inlet chamber. The siphon has a 30-inch diameter and a 48-inch diameter pipe running in parallel under the Passaic River.

The last stretch of pipe runs from the outlet siphon to the Wallington Pumping Station and is 54 inches in diameter.

# Rutherford-East Rutherford Branch Intercepting Sewer

The Rutherford-East Rutherford (RER) Branch Intercepting Sewer is approximately 4,943 feet long and extends from the Wallington Pumping Station Regulator in Wallington to Memorial Park in East Rutherford. The interceptor generally follows Madison Street, Carlton Avenue, Paterson Avenue and VanWinkle Avenue to the Wallington Pump Station Regulator. Appurtenances on the Interceptor include the East Rutherford and the Rutherford Meter Chambers. Flow enters the Interceptor through local sewers, house connections, and the VanWinkle Meter Chamber.

There are a total of 25 manholes on the Rutherford-East Rutherford Branch Intercepting Sewer. The sewer is constructed of 24-inch diameter poured in place concrete at its upstream end. Its size increases to 27-inch diameter at RER-8 and to 36-inch by 27-inch semi-elliptical and then to 36-inch circular near the intersection of Main Avenue and VanWinkle Avenue in Wallington. Small segment of the 36-inch pipe and the 36-inch by 27-inch semi-elliptical pipe along VanWinkle Avenue are constructed of brick.

#### Rutherford-Lyndhurst Branch Intercepting Sewer

The Rutherford-Lyndhurst Branch Intercepting Sewer is approximately 5,893 ft long and extends from the Yantacaw Pumping Station in Clifton to the Woodward Avenue Regulator in Rutherford. The sewer generally follows Riverside Avenue and conveys flows from the Rutherford, Pierrepont and Woodward Avenue Regulators, local sewers and service connections to the Yantacaw Pumping Station.

There are a total of 25 manholes on the Rutherford-Lyndhurst Branch Intercepting Sewer including the manholes of one meter chamber and the three aforementioned regulators. The interceptor is an 18-inch diameter concrete cradled vitrified clay pipe at its upstream end and increases to a 24-inch diameter poured in place concrete pipe at its downstream end. Its slope varies from 0.0012 to 0.0013. Appurtenances along the interceptor include a meter chamber, the Rutherford Avenue Regulator, the Pierrepont Avenue Regulator and the Woodward Avenue Regulator.

#### Kearny-North Arlington Branch Interceptor

The Kearny-North Arlington (KNA) Branch Interceptor is approximately 5,330 feet long and extends from the Main Interceptor on Academy Street in Belleville to North Midland Avenue in Kearny. The Kearny-North Arlington Branch Interceptor generally follows the east bank of the



Passaic River through North Arlington and Kearny. Flows enter the Kearny-North Arlington branch Interceptor through the Stewart Avenue and Washington Avenue Regulators, local sewers and a number of house connections and are conveyed to the Main Interceptor through the North Arlington Siphon.

There are a total of 31 manholes on the Kearny-North Arlington Branch Interceptor, including the manholes of the two meter chambers and the North Arlington Branch Regulator.

The Kearny-North Arlington Branch Interceptor is constructed of poured in place concrete pipe and concrete encased vitrified clay pipe. The siphon is 20-inch diameter cast iron pipe. Between the siphon outlet chamber and KNA-4, the sewer is a 24-inch diameter concrete pipe with a slope of 0.0011. At KNA-4, the pipe changes to an 18-inch diameter concrete encased vitrified clay pipe with a slope of 0.0014. At KNA-12, the size of the pipe changes to 12-inch diameter concrete encased vitrified clay pipe to the upstream end of the branch interceptor. Throughout the 12-inch diameter section, the slope of the pipe varied from 0.000068 to 0.00089.

## Westerly Interceptor Sewer

Bayonne's Westerly Interceptor Sewer generally runs along Newark Bay and ranges from 12 inches to 48 inches in diameter. The interceptor discharges to the West 22nd Street Sewage Pumping Station which sends flow to the Easterly Interceptor.

#### Easterly Interceptor Sewer

Bayonne's Easterly Interceptor Sewer generally runs along Route 440 and Avenue F, and ranges from 42 inches to 72 inches in diameter. The interceptor discharges to the Oak Street Pumping Station.

## Southerly Interceptor Sewer

Bayonne's Southerly Interceptor Sewer is generally routed along the Kill Van Kull and ranges from 24 inches to 54 inches in diameter. The interceptor discharges to the Oak Street Pumping Station.

## **D.2.5** Pump Stations

PVSC's Main Interceptor has two pump stations – the Wallington Pump Station and the Yantacaw Pump Station. Both pump stations were built in the year 1924 and have undergone several interim modifications since.

The Wallington Pump Station is located in the Borough of Wallington within Bergen County and serves the municipalities of Wallington, Garfield, East Rutherford, and portions of Passaic, Rutherford, and Saddle Brook. The pump station is equipped with two 75 HP and one 125 HP dry pit submersible pumps, with a wet well and dry well arrangement. Wastewater enters the pump station through a 54-inch diameter pipe (Lodi Force Main) and passes through screening equipment. The pump station discharges flow through a 36-inch diameter force main. The station has an emergency generator, electrical power distribution equipment, HVAC equipment, and instrumentation.



The Yantacaw Pump Station is located in the City of Clifton in Passaic County and serves portions of Lyndhurst and Rutherford. The Pump Station is equipped with three 50 HP dry pit submersible pumps, with a wet well and dry well arrangement. Wastewater enters the Pump Station through a 24-inch diameter pipe and passes through screening equipment. The pump station discharges flow through an 18-inch diameter force main. The station has an emergency generator, electrical power distribution equipment, HVAC equipment, and instrumentation.

## City of Bayonne

The City of Bayonne operates four pumping stations; West 22<sup>nd</sup> St, Oak St, West 1<sup>st</sup> St and 5<sup>th</sup> Street Pumping stations, two on the combined sewer system and two on the relief sewer system.

- The West 22nd Street Sewage Pumping Station is located at the end of West 22nd Street, near Newark Bay. This Pumping Station pumps flows between the Westerly Interceptor and the Easterly Interceptor. The station is equipped with two pumps, and has a pumping capacity of 25 MGD.
- The Oak Street Pumping Station is located at Oak Street and 5th Street. This Pumping Station pumps flows from the Easterly and Southerly Interceptor Sewers to PVSC. The station is equipped with four (4) pumps, and has a pumping capacity of 57.6 MGD. 17.6 MGD of that flow can be pumped to PVSC, and the remaining 40 MGD is pumped to an outfall.
- The West 1st Street Pumping Station is located on West 1st Street near Humphreys Avenue. This Pumping Station relieves the Southerly Interceptor when hydraulic head increases beyond the crown of the pipe. This station is equipped with two pumps and has a pumping capacity of 6 MGD.\
- The 5th Street Pumping Station is located at 5th Street and Ingraham Avenue. This Pumping Station accepts stormwater and combined sewer overflows, and discharges to an inlet tributary to the Kill Van Kull. This station is equipped with eight pumps and has a pumping capacity of 300 MGD.

## North Bergen MUA

North Bergen MUA owns and operates three pumping stations; Central PS, 8<sup>th</sup> Street PS, and 61<sup>st</sup> Street Pumping Stations. Approximately 7 MG dry weather flow of combined sewage per day is pumped from North Bergen to Jersey City MUA's CSS for ultimate conveyance to the PVSC WRRF via the Hudson County force main.

## Town of Kearny

The South Kearny Pump Station that has a maximum capacity of 17.5 MGD. This pump station discharges directly the PVSC WRRF. There are four smaller sanitary pumping stations located throughout the Town of Kearny: Quincy Place, Gunnel Oval, East Midland and King Street.

## **D.2.6 Force Mains**

The Hudson County force main ranges in size from 54 inches to 72 inches and is primarily comprised of prestressed concrete cylinder pipe. The force main was installed in the late 1980s and was relocated in two locations in Jersey City in 1997. PVSC maintains approximately 10,000 feet of the force main from the Jersey City emergency overflow structure, which is



located under Newark Bay, to the connection into PVSC's influent pumping station just prior to PVSC's primary clarifiers.

# City of Bayonne

Bayonne's West 22nd Street Sewage Pumping Station pumps to a 30-inch force main which discharges to the Westerly Interceptor. Bayonne's Oak Street Pumping Station pumps to a 36-inch force main which discharges into the Hudson County force main in Jersey City.

# **D.2.7 CSO Control Facilities**

Of the regulators to the PVSC interceptors, ten in Newark have been retrofitted and equipped with motorized sluice gates, which are remotely controlled from the plant via a telemetered control signal. PVSC operates the ten Newark sluice gates with radio transmission through Phoenix contact and Elpro<sup>™</sup> transmitters back to PVSC's SCADA system. The gates can be utilized during rain events to prevent overloading the WRRF. The appropriate gates may be controlled to bypass the combined sewer from the regulator to the Passaic River.

# City of Newark

Newark has 16 CSO Control Facilities, 12 Netting Facilities and 4 Screening Facilities. The South Side Interceptor has a gate that can be manually closed in the event of an emergency situation, causing a diversion of the entire flow to the Newark Airport Peripheral Ditch.

## **Borough of East Newark**

The Borough of East Newark owns and operates 1 CSO Floatable Control Facility.

# Town of Harrison

The Town of Harrison owns and operates 6 CSO Floatable Control Facilities. Harrison formerly owned and operated an additional CSO Floatables Control Facility on outfall 004A. This drainage area has been separated and NJDEP will be issuing Harrison a minor modification NJPDES permit action to remove Dey Street outfall 004A in the near future.

# Town of Kearny

The Town of Kearny owns and operates 5 CSO Floatable Control Facilities.

# City of Paterson

The City of Paterson owns and operates 19 CSO Floatable Control Facilities.

# City of Bayonne

The City of Bayonne owns and operates 17 CSO control facilities and 17 discharge points originating at regulator chambers to the interceptor sewers. In addition to the CSO points originating at regulators to the interceptor, the City has constructed new CSO control facilities to provide hydraulic relief to the CSS. While catch basins in the area of the relief sewer were directly connected, catch basins in upstream areas remain connected to the combined sewer system. Control facilities, such as overflow pipes or weirs, divert excess wastewater flow from the combined sewer collection system to the receiving waters. Overall the relief sewer system



contains 37 control facilities tributary to 13 CSO discharge pipes. As construction of solids/floatables control facilities were undertaken, several of the outfalls were combined to reduce the number of individual facilities.

## Township of North Bergen

The North Bergen MUA has 8 netting facilities and 1 bar screen in the Central Service Area.. While several of the CSO outfalls receive flows from only one control facility, the other systems contain multiple control points.

# D.2.8 CSO Outfalls

**Table D-2** lists all of the CSO outfalls, associated permittees, permit numbers and the waterbodies into which they discharge in the PVSC Service Area. PVSC CSO Sewer District receiving waters include the Passaic River, Newark Bay, Upper New York Bay, Hackensack River, Hudson River, Kill Van Kull, as well as their tributaries. There are a total of 90 outfalls within the PVSC Service District located in the Towns of Harrison and Kearny, Borough of East Newark, the Township of North Bergen and the Cities of Bayonne, Newark and Paterson.

## City of Bayonne

Overall the City of Bayonne has 28 CSO outfall pipes that are all equipped with solids/floatables removal equipment. Sixteen of the CSO points discharge to Newark Bay. Nine flow to the Kill Van Kull and three drain to the Hudson River. All facilities are currently owned and operated by the City of Bayonne.

## **CSO** – 001A

CSO - 001A is located at Bayonne Pump Station on East  $15^{th}$  Street and discharges in to the Kill Van Kull. The outfall is a 54" diameter cast-in-place pipe equipped with a floating net and mechanical bar screens.

# *CSO – 002A*

CSO – 002A is located at the 5<sup>th</sup> Street Pump Station and discharges in to the Kill Van Kull. The outfall is an 84" diameter reinforced concrete pipe equipped with mechanical bar screens.

## $CSO - \theta \theta 3A$

CSO – 003A is located at the 1<sup>st</sup> Street Pump Station and discharges in to the Kill Van Kull. The outfall is a 12" diameter pipe equipped with inline netting.

## **CSO** – 004A

CSO - 004A is located at Lord Avenue and discharges in to the Kill Van Kull. The outfall is a 30" diameter reinforced concrete pipe equipped with a static overflow weir.

## CSO – 006A

CSO – 006A is located at East 30<sup>th</sup> Street and discharges in to the Upper New York Bay. The outfall is a 54" diameter corrugated metal pipe equipped with inline netting.



## *CSO – 007A*

CSO – 007A is located at East 34<sup>th</sup> Street and discharges in to the Upper New York Bay. The outfall is a 72" diameter reinforced concrete pipe equipped with end of pipe netting.

## **CSO** – 008A

CSO – 008A is located at East 5<sup>th</sup> Street and discharges in to the Kill Van Kull. The outfall is a 48" diameter corrugated metal pipe equipped with inline netting.

## **CSO** – 009A

CSO – 009A is located at Broadway and East 1<sup>st</sup> Street and discharges in to the Kill Van Kull. The outfall is a 24" diameter reinforced concrete pipe equipped with inline netting.

## **CSO** – 010A

CSO – 010A is located at Avenue C and East 1<sup>st</sup> Street and discharges in to the Kill Van Kull. The outfall is a 24" diameter reinforced concrete pipe equipped with inline netting.

## **CSO** – *011A*

CSO - 011A is located at West 3<sup>rd</sup> Street and discharges in to the Newark Bay. The outfall is a 24" reinforced concrete pipe equipped with inline netting.

## **CSO** – 012A

CSO – 012A is located at West 5<sup>th</sup> Street and discharges in to the Newark Bay. The outfall is a 24" diameter vitrified clay pipe equipped with inline netting.

## *CSO* – *013*

CSO - 013A is located at Edwards Court and discharges in to the Newark Bay. The outfall is a 12" diameter cast-in-place pipe equipped with a static bar screen.

## **CSO** – 014A

CSO - 014A is located at West 16<sup>th</sup> Street and discharges in to the Newark Bay. The outfall is a 30" diameter reinforced concrete pipe equipped with inline netting.

## **CSO** – 015A

CSO - 015A is located at West  $22^{nd}$  Street and discharges in to the Newark Bay. The outfall is a 36" diameter cast-in-place pipe equipped with end of pipe netting.

## **CSO** – 016A

CSO – 016A is located at West 24<sup>th</sup> Street and discharges in to the Newark Bay. The outfall is a 16" diameter vitrified clay pipe equipped with inline netting.

## *CSO – 017A*

CSO - 017A is located at West 25<sup>th</sup> Street and discharges in to the Newark Bay. The outfall is a 36" diameter cast-in-place pipe equipped with inline netting.



## *CSO – 018A*

CSO - 018A is located at West  $30^{th}$  Street and discharges in to the Newark Bay. The outfall is an 18" diameter reinforced concrete pipe equipped with inline netting.

## **CSO** – 019A

CSO - 019A is located at Lincoln Parkway and discharges in to the Newark Bay. The outfall is a 36" diameter cast-in-place pipe equipped with inline netting.

## **CSO** – 020A

CSO - 020A is located at West 59<sup>th</sup> Street and discharges in to the Newark Bay. The outfall is a 36" diameter reinforced concrete pipe equipped with inline netting.

## **CSO** – 021A

CSO – 021A is located at East 50<sup>th</sup> Street and discharges in to the Upper New York Bay. The outfall is a 48" diameter reinforced concrete pipe equipped with inline netting.

## $CSO - \theta 22A$

CSO - 022A is located at Zabriskie Avenue and discharges in to the Newark Bay. The outfall is a 33" diameter reinforced concrete pipe equipped with three static bar screens.

## *CSO – 024A*

CSO – 024A is located at Humphrey's Avenue and discharges in to the Kill Van Kull. The outfall is a 24" diameter corrugated metal pipe equipped with four static bar screens.

## **CSO** – 026A

CSO – 026A is located at Veteran's Park and discharges in to the Newark Bay. The outfall is a 48" diameter corrugated metal pipe equipped with static bar screens.

## **CSO** – 028A

CSO - 028A is located at Lincoln Parkway and discharges in to the Newark Bay. The outfall is a 36" diameter reinforced concrete pipe equipped with three static bar screens.

## **CSO** – 029A

CSO - 029A is located at West 37<sup>th</sup> Street and discharges in to the Newark Bay. The outfall is a 42" diameter vitrified clay pipe equipped with end of pipe netting.

## $CSO - \theta 3\theta A$

CSO - 030A is located at West 54<sup>th</sup> Street and discharges in to the Newark Bay. The outfall is a 24" diameter reinforced concrete pipe equipped with two static bar screens.

## **CSO** – *034A*

CSO - 034A is located at Bayview Court and discharges in to the Newark Bay. The outfall is a 12" diameter vitrified clay pipe equipped with a static bar screen.



## *CSO – 037A*

CSO - 037A is located at Trask Avenue and discharges in to the Kill Van Kull. The outfall is a 36" diameter reinforced concrete pipe equipped with a static bar screen.

## **Borough of East Newark**

The Borough of East Newark has one CSO outfall. This single outfall has solids/floatables removal equipment installed upstream of the point of discharge. The outfall discharges in to the Passaic River.

## **CSO** – 001A

CSO - 001A is located at Central Avenue and discharges in to the Passaic River. The outfall is a 30"x45" brick pipe.

## Town of Harrison

Harrison Town has six CSO outfalls that are all equipped with solids/floatables removal equipment installed upstream of the point of discharge. All six of the CSO outfalls discharge in to the Passaic River. Harrison previously had seven CSO's but separated the drainage area associated with Outfall 004A and closed the outfall.

## **CSO** – 001A

CSO - 001A is located at Hamilton Street and discharges in to the Passaic River. The outfall is a 24" diameter VTP pipe.

## *CSO – 002A*

CSO - 002A is located at Cleveland Avenue and discharges in to the Passaic River. The outfall is a 20" diameter VTP pipe.

## **CSO** – 003A

CSO - 003A is located at Harrison Avenue and discharges in to the Passaic River. The outfall is a 30"x45" brick pipe.

## $CSO - \theta \theta 5A$

CSO - 005A is located at Middlesex Street and discharges in to the Passaic River. The outfall is a 24" diameter VTP pipe.

## **CSO** – 006A

CSO – 006A is located at Bergen Street and discharges in to the Passaic River. The outfall is a 24" diameter VTP pipe.

## *CSO – 007A*

CSO – 007A is located at Worthington Avenue (Supor Boulevard) and discharges in to the Passaic River. The outfall is a 24" diameter VTP pipe.



# City of Newark

The City of Newark has 18 CSO outfalls including the Queen Street outfall that has been reactivated. Ten of the CSO outfalls are equipped with solids/ floatables removal equipment installed upstream of the point of discharge. The CSO outfalls discharge into the Passaic River and the Elizabeth Channel.

## **CSO** – *002A*

CSO - 002A is located at Verona Avenue and discharges in to the Passaic River. The outfall is a 59x72" brick pipe.

# *CSO – 003A*

CSO - 003A is located at Delavan Avenue and discharges in to the Passaic River. The outfall is a 60" diameter reinforced concrete pipe.

## **CSO** – 004A

CSO - 004A is located at Herbert Place and discharges in to the Passaic River. The outfall is a 48"x54" brick pipe.

## **CSO** – 005A

CSO - 005A is located at Herbert Place and discharges in to the Passaic River. The outfall is a 51" diameter brick pipe.

## *CSO – 008A*

CSO - 008A is located at 4<sup>th</sup> Avenue and discharges in to the Passaic River. The outfall is a 48"x48" brick pipe.

## **CSO** – 009A

CSO - 009A is located at Clay Street and discharges in to the Passaic River. The outfall is a 100"x75" brick pipe.

# **CSO** – 010A

CSO - 010A is located at Clay Street and discharges in to the Passaic River. The outfall is a 100"x75" brick pipe.

## **CSO** – 014A

CSO - 014A is located at Saybrook Place and discharges in to the Passaic River. The outfall is a 102"x83" brick pipe.

## **CSO** – 015A

CSO - 015A is located at City Dock and discharges in to the Passaic River. The outfall is a 108"x87" brick pipe.

# $CSO - \theta 16A$

CSO - 016A is located at Jackson Street and discharges in to the Passaic River. The outfall is a 72" diameter brick pipe.



# **CSO** – *017A*

CSO - 017A is located at Polk Street and discharges in to the Passaic River. The outfall is a 97" diameter brick pipe.

# **CSO** – 018A

CSO - 018A is located at Freeman Street and discharges in to the Passaic River. The outfall is a 44" diameter reinforced concrete pipe.

# *CSO – 022A*

CSO - 022A is located at Roanoke Avenue and discharges in to the Passaic River. The outfall is a 60" diameter pipe.

# **CSO** – 023A

CSO – 023A is located at Adams Street and discharges in to the Elizabeth Channel.

## **CSO** – 025A

CSO – 025A is located at Peddie Street and discharges in to the Elizabeth Channel. The outfall is a 46"x46" reinforced concrete pipe.

# **CSO** – 026A

CSO - 026A is located at Queen Street and discharges in to the Queen Ditch. The outfall is a 42" diameter pipe.

# **CSO** – 027A

CSO - 027A is located at Waverly and discharges in to the Elizabeth Channel. The outfall is a 96" diameter reinforced concrete pipe.

# $CSO - \theta 3\theta A$

CSO - 030A is located at Avenue A and discharges in to the Elizabeth Channel. The outfall is a 116"x52" pipe.

# Town of North Bergen

The North Bergen MUA's Central CSS is part of the PVSC's WRRF collection system. It has nine CSO outfalls that are permitted, owned and operated by the North Bergen MUA. One outfall discharges to Bellmans Creek, six discharge to Cromakill Creek and two discharge to Penhorn Creek which drain to the Hackensack River. During dry weather conditions, all of the wastewater flows from the western and central portions of the North Bergen is ultimately conveyed to the PVSC WRRF in Newark, NJ via the Jersey City MUA pump station and the Hudson County force main. During wet weather periods when the capacity of the collection system is exceeded, combined sewage will be discharged as a CSO from one or more of North Bergen MUA's nine outfalls.

# $CSO - \theta \theta 3A$

CSO - 003A is located at the west end of  $91^{st}$  Street and discharges in to Bellmans Creek. The outfall is equipped with a floating net.



## **CSO** – 005A

CSO - 005A is located at the west end of  $69^{th}$  Street and discharges in to Cromakill Creek. The outfall is equipped with a headwall/pipe.

## **CSO** – *006A*

CSO – 006A is located west of 60<sup>th</sup> Street and Tonnelle Avenue. The outfall discharges in to Cromakill Creek and is equipped with a headwall/pipe.

## **CSO** – 007A

CSO - 007A is located at the intersection of  $51^{st}$  Street and Westside Avenue. The outfall discharges in to Cromakill Creek and is equipped with a fixed net.

## **CSO** – 008A

CSO - 008A is located at the intersection of  $43^{rd}$  Street and Westside Avenue. The outfall discharges in to Cromakill Creek and is equipped with a floating net.

## **CSO** – 009A

CSO – 009A is located at the intersection of Westside Avenue and Paterson Plank Road. The outfall discharges in to Cromakill Creek and is equipped with a floating net.

## $CSO - \theta 1 \theta A$

CSO – 010A is located at the intersection of 29<sup>th</sup> Street and the Penske Facility. The outfall discharges in to Penhorn Creek and is equipped with a headwall/pipe.

## **CSO** – *011A*

CSO – 011A is located at the intersection of 11<sup>th</sup> Street and Dell Avenue. The outfall discharges in to Penhorn Creek and is equipped with a headwall/pipe.

## **CSO** – 014A

CSO - 014A is located at the intersection of Westside Avenue and Paterson Plank Road. The outfall discharges in to Cromakill Creek.

## City of Paterson

The City of Paterson has 23 CSO outfalls and one discharge (CSO-028) currently under appeal to be re-added to the permit. Nineteen of the twenty three have solids/floatables removal equipment installed upstream of the point of discharge. All twenty three CSO outfalls discharge in to the Passaic River.

## CSO 001A – Curtis Place

The Curtis Place PVSC Regulator is located approximately 100 feet west of the intersection of Curtis Place and Broadway. Outfall 001 is a 48" diameter pipe, approximately 30 feet long, which discharges at the southwest corner of the bridge that leads to the parking lot of the Salvation Army Building.



# CSO 003A – West Broadway

The West Broadway PVSC Regulator is located within West Broadway, approximately 40 feet northwest of the intersection of West Broadway and (currently abandoned) River Street. Outfall 003 is an 18" diameter pipe, approximately 40 feet long, which discharges to the Passaic River through the southeastern foundation wall of the County Bridge over the Passaic River that links the north and south sides of West Broadway.

## CSO 005A – Bridge Street

The Bridge Street PVSC Regulator is located approximately 50 feet northwest of the intersection of River and Bridge Streets. Outfall 005 is approximately twenty-five (25) feet long, and discharges to the Passaic River beneath the southeast foundation of the bridge that links the north and south sides of Bridge Street over the Passaic River.

## CSO 006A – Montgomery Street

The Montgomery Street PVSC Regulator is located in a sidewalk area along the northwest edge of River Street at its intersection with Montgomery Street. There is no discharge pipe at Outfall 006, combined sewer discharge to the Passaic River occurs immediately northwest of the regulator.

## CSO 007A – Straight Street

The Straight Street PVSC Regulator is located approximately 30 feet northwest of the intersection of Straight and River Streets. Outfall 007 passes through the southeastern foundation wall of the Straight Street Bridge, and discharges to the Passaic River.

## CSO 010A – Warren Street

The Warren Street PVSC Regulator is located on Warren Street approximately 350 feet west of River Street in a truck loading driveway for Halal Meat. Outfall 010 is approximately 50 feet long, and discharges to the Passaic River behind Halal Meat.

## CSO 013A – East 11th Street

The East 11<sup>th</sup> Street PVSC Regulator is located in East 11<sup>th</sup> Street approximately 450 feet north of 5<sup>th</sup> Avenue. Outfall 013 discharges to the Passaic River at the north terminus of East 11<sup>th</sup> Street.

# CSO 014A – East 12<sup>th</sup> Street and 4<sup>th</sup> Avenue

The East 12<sup>th</sup> Street and 4<sup>th</sup> Avenue PVSC Regulator is located at the intersection of East 12<sup>th</sup> Street and 4<sup>th</sup> Avenue. Outfall 014 runs north from the regulator and discharges to the Passaic River at the bottom of a steep slope.

## *CSO 015A* – *S.U.M. Park*

The S.U.M. Park PVSC Regulator is located approximately 200 feet southeast of the southeasterly corner of Hinchcliff Stadium. Outfall 015 is a 36" diameter pipe, which is located along a steep slope. The outfall discharges to the Passaic River approximately 60 feet southeast of the regulator. It should be noted that the S.U.M. PVSC Regulator is the starting point of the PVSC Interceptor.



# CSO 016A – Northwest Street

The Northwest Street PVSC Regulator is located at the intersection of Broadway and Presidential Boulevard. Outfall 016 is approximately 20 feet long, and discharges to the Passaic River through the north foundation wall of the County Bridge that links the north and south sides of Broadway over the Passaic River.

## CSO 017A – Arch Street

The Arch Street PVSC Regulator is located at the southeast end of Arch Street, approximately 200 feet southeast of Presidential Boulevard. Outfall 017 discharges to the Passaic River underneath the bridge connecting Arch and Bridge Streets.

## CSO 021A – Bergen Street

The Bergen Street PVSC Regulator is located at the eastern terminus of Bergen Street. A short section of 32" x 49" box culvert exits the regulator and discharges to the Passaic River immediately east of the regulator.

## CSO 022A – Short Street

The Short Street PVSC Regulator is located at the eastern terminus of Short Street. Outfall 022 runs approximately 20 feet to the east and discharges to the Passaic River.

## CSO 023A – 2<sup>nd</sup> Avenue

The 2<sup>nd</sup> Avenue PVSC Regulator is located along the eastern shoulder of McLean Boulevard (N.J.S.H. 20) at its intersection with 2nd Avenue. Outfall 023 is approximately 35 feet long and discharges to the Passaic River at a point approximately 220 feet east of the intersection of 2<sup>nd</sup> Avenue and 25<sup>th</sup> Street.

## CSO 024A – 3<sup>rd</sup> Avenue

The 3<sup>rd</sup> Avenue PVSC Regulator is located at the intersection of McLean Boulevard (N.J.S.H. 20) and 3rd Avenue. (The regulator lies underneath the southbound travel lanes of Route 20.) Outfall 024 is a 42" diameter pipe, approximately 70 feet long, which discharges to the Passaic River at a point approximately 100 feet east of the intersection of 3<sup>rd</sup> Avenue and McLean Boulevard.

## CSO 025A – 10<sup>th</sup> Avenue and 33<sup>rd</sup> Street

The 10<sup>th</sup> Avenue and 33<sup>rd</sup> Street PVSC Regulator is located at the intersection of McLean Boulevard (N.J.S.H. 20) and 33rd Street. Outfall 025 runs along the centerline of 33<sup>rd</sup> Street for approximately 250 feet and discharges to the Passaic River through the southwest foundation wall of County Bridge #8.

## *CSO* 026*A* – 20<sup>th</sup> *Avenue*

The 20<sup>th</sup> Avenue PVSC Regulator is located along the eastern edge of McLean Boulevard (N.J.S.H. 20) at its intersection with 20<sup>th</sup> Avenue. Outfall 026 is approximately 600 feet long, and runs to the east along a warehouse complex access driveway, discharging to the Passaic River.



# CSO 027A – Market Street

The Market Street PVSC Regulator is located along the western edge of the Market Street exit ramp from McLean Boulevard (N.J.S.H. 20), approximately 240 feet northwest of the intersection of Interstate 80 and McLean Boulevard. Outfall 027 runs beneath Route 20 approximately 400 feet and discharges to the Passaic River through the west foundation wall of the bridge that connects Market Street (Elmwood Park) and McLean Boulevard (Paterson).

# CSO 029A – River Road (Loop Road)

Outfall 029 contains six (6) City owned and operated IOCs which discharge to this outfall. The overflow from Overflow Chamber EF-1 discharges to Outfall 029 just north of River Street; the overflow from Overflow Chambers EF-2 through EF-6 discharge to the outfall along Paterson Avenue between the intersections of Grand Street and Van Houten Street.

## CSO 030A – 19th Avenue

The 19<sup>th</sup> Avenue PVSC Regulator is located approximately 500 feet east of the intersection of McLean Boulevard and 19<sup>th</sup> Avenue. The outfall is a 90" diameter reinforced concrete pipe and discharges in to the Passaic River.

# CSO 031A – Route 20 Bypass

The Route 20 Bypass PVSC Regulator is located underneath the entrance ramp to Interstate 80 from Route 20. The outfall is a 60"x54" reinforced concrete pipe and discharges in to the Passaic River.

# CSO 032A – Hudson Street

The Hudson Street PVSC Regulator is located approximately 30 feet southeast of the intersection of Hudson Street and Presidential Boulevard. Outfall 032 runs approximately 20 feet and discharges to the Passaic River.

The Hudson Street regulator is located on a branch interceptor of the PVSC system, and is used to regulate combined flows from areas upstream of the regulator in which other PVSC Regulators have been plugged (specifically CSO Area 017 - Arch Street, CSO Area 018 - Jefferson Street, CSO Area 019 - Stout Street and CSO Area 020 - North Straight Street).

# CSO 033A – River Street

The River Street PVSC Regulator is located approximately 250 feet west of the intersection of Tyler Street and River Street. The outfall is a 48"x42" diameter reinforced concrete arch box and discharges in to the Passaic River.

# Town of Kearny

At one time, the Town of Kearny had nine CSO outfalls, but over time has decreased that number to five CSO outfalls. Outfalls at Washington Avenue, Bergen Avenue and Marshall Avenue were separated, and the outfall at Tappan Street was consolidated with the Dukes Street outfall (010A). All five operational CSO outfalls have solids/floatables removal equipment



installed upstream of the point of discharge. The CSO outfalls discharge in to the Passaic River and Frank's Creek.

## **CSO** – *001A*

CSO – 001A is located at Stewart Avenue and discharges in to the Passaic River.

## **CSO** – 004A

CSO – 004A is located at Narine Avenue and discharges in to the Passaic River.

## *CSO* – *006A*

CSO – 006A is located at Johnston Avenue and discharges in to the Passaic River.

## **CSO** – 007A

CSO – 007A is located at Ivy Street and discharges in to the Lower Passaic River Unnamed Tributary (Frank's Creek).

#### **CSO** – 010A

CSO – 010A is located at Dukes Street and discharges in to the Lower Passaic River Unnamed Tributary (Frank's Creek).

| SPDES     | Permittee | CSO<br>Number | Regulator Number<br>(Outfall Name)  | Receiving Water<br>Body |
|-----------|-----------|---------------|-------------------------------------|-------------------------|
| NJ0109240 | Bayonne   | 001A          | B-001A<br>(E. 15 <sup>th</sup> St.) | Kill Van Kull           |
| NJ0109240 | Bayonne   | 002A          | B-002A<br>(5 <sup>th</sup> St.)     | Kill Van Kull           |
| NJ0109240 | Bayonne   | 003A          | B-003A<br>(1 <sup>st</sup> St.)     | Kill Van Kull           |
| NJ0109240 | Bayonne   | 004A          | B-004A<br>(Lord Ave.)               | Kill Van Kull           |
| NJ0109240 | Bayonne   | 006A          | B-006A<br>(E. 30 <sup>th</sup> St.) | Upper NY Bay            |
| NJ0109240 | Bayonne   | 007A          | B-007A<br>(E. 34 <sup>th</sup> St.) | Upper NY Bay            |
| NJ0109240 | Bayonne   | 008A          | B-008A<br>(E. 5 <sup>th</sup> St.)  | Kill Van Kull           |
| NJ0109240 | Bayonne   | 009A          | B-009A<br>(Broadway)                | Kill Van Kull           |
| NJ0109240 | Bayonne   | 010A          | B-010A<br>(Ave. C)                  | Kill Van Kull           |
| NJ0109240 | Bayonne   | 011A          | B-011A<br>(W. 3 <sup>rd</sup> St.)  | Newark Bay              |
| NJ0109240 | Bayonne   | 012A          | B-012A                              | Newark Bay              |

## Table D-2: CSO Outfalls and Their Receiving Waters



| SPDES     | Permittee     | CSO<br>Number | Regulator Number<br>(Outfall Name)  | Receiving Water<br>Body |
|-----------|---------------|---------------|-------------------------------------|-------------------------|
|           |               |               | (W. 5 <sup>th</sup> St.)            |                         |
| NJ0109240 | Bayonne       | 013A          | B-013A<br>(Edwards Ct.)             | Newark Bay              |
| NJ0109240 | Bayonne       | 014A          | B-014A<br>(W. 16 <sup>th</sup> St.) | Newark Bay              |
| NJ0109240 | Bayonne       | 015A          | B-015A<br>(W. 22 <sup>nd</sup> St.) | Newark Bay              |
| NJ0109240 | Bayonne       | 016A          | B-016A<br>(W. 24 <sup>th</sup> St.) | Newark Bay              |
| NJ0109240 | Bayonne       | 017A          | B-017A<br>(W. 25 <sup>th</sup> St.) | Newark Bay              |
| NJ0109240 | Bayonne       | 018A          | B-018A<br>(W. 30 <sup>th</sup> St.) | Newark Bay              |
| NJ0109240 | Bayonne       | 019A          | B-019A<br>(Lincoln Pkwy)            | Newark Bay              |
| NJ0109240 | Bayonne       | 020A          | B-020A<br>(W. 59 <sup>th</sup> St.) | Newark Bay              |
| NJ0109240 | Bayonne       | 021A          | B-021A<br>(E. 50 <sup>th</sup> St.) | Upper NY Bay            |
| NJ0109240 | Bayonne       | 022A          | B-022A<br>(Zabriskie Ave.)          | Newark Bay              |
| NJ0109240 | Bayonne       | 024A          | B-024A<br>(Humphrey's Ave.)         | Kill Van Kull           |
| NJ0109240 | Bayonne       | 026A          | B-026A<br>(Veteran's Park)          | Newark Bay              |
| NJ0109240 | Bayonne       | 028A          | B-028A<br>(Lincoln Pkwy)            | Newark Bay              |
| NJ0109240 | Bayonne       | 029A          | B-029A<br>(W. 37 <sup>th</sup> St.) | Newark Bay              |
| NJ0109240 | Bayonne       | 030A          | B-030A<br>(W. 54 <sup>th</sup> St.) | Newark Bay              |
| NJ0109240 | Bayonne       | 034A          | B-034A<br>(Bayview Ct.)             | Newark Bay              |
| NJ0109240 | Bayonne       | 037A          | B-037A<br>(Trask Ave.)              | Kill Van Kull           |
| NJ0117846 | East Newark   | 001A          | E-001A<br>(Central Ave.)            | Passaic River           |
| NJ0108871 | Harrison Town | 001A          | H-001A<br>(Hamilton Ave.)           | Passaic River           |
| NJ0108871 | Harrison Town | 002A          | H-002A<br>(Cleveland Ave.)          | Passaic River           |



#### Passaic Valley Sewerage Commission Service Area System Characterization Report

| SPDES     | Permittee     | CSO<br>Number | Regulator Number<br>(Outfall Name) | Receiving Water<br>Body |
|-----------|---------------|---------------|------------------------------------|-------------------------|
| NJ0108871 | Harrison Town | 003A          | H-003A<br>(Harrison Ave.)          | Passaic River           |
| NJ0108871 | Harrison Town | 005A          | H-005A<br>(Middlesex St.)          | Passaic River           |
| NJ0108871 | Harrison Town | 006A          | H-006A<br>(Bergen St.)             | Passaic River           |
| NJ0108871 | Harrison Town | 007A          | H-007A<br>(Worthington Ave)        | Passaic River           |
| NJ0111244 | Kearny Town   | 001A          | K-001A<br>(Stewart Ave.)           | Passaic River           |
| NJ0111244 | Kearny Town   | 004A          | K-004A<br>(Nairne Ave.)            | Passaic River           |
| NJ0111244 | Kearny Town   | 006A          | K-006A<br>(Johnston Ave.)          | Passaic River           |
| NJ0111244 | Kearny Town   | 007A          | K-007A<br>(Ivy St.)                | Frank's Creek           |
| NJ0111244 | Kearny Town   | 010A          | K-010A<br>(Duke St.)               | Frank's Creek           |
| NJ0108758 | Newark City   | 002A          | N-002A<br>(Verona Ave.)            | Passaic River           |
| NJ0108758 | Newark City   | 003A          | N-003A<br>(Delavan Ave.)           | Passaic River           |
| NJ0108758 | Newark City   | 004A          | N-004A/004A<br>(Herbert)           | Passaic River           |
| NJ0108758 | Newark City   | 005A          | N-005A<br>(Herbert Pl.)            | Passaic River           |
| NJ0108758 | Newark City   | 008A          | N-008A<br>(Fourth Ave.)            | Passaic River           |
| NJ0108758 | Newark City   | 009A          | N-009A<br>(Clay St.)               | Passaic River           |
| NJ0108758 | Newark City   | 010A          | N-010A<br>(Clay St.)               | Passaic River           |
| NJ0108758 | Newark City   | 014A          | N-014A<br>(Saybrook)               | Passaic River           |
| NJ0108758 | Newark City   | 015A          | N-015A<br>(City Dock)              | Passaic River           |
| NJ0108758 | Newark City   | 016A          | N-016A<br>(Jackson St.)            | Passaic River           |
| NJ0108758 | Newark City   | 017A          | N-017A<br>(Polk St.)               | Passaic River           |
| NJ0108758 | Newark City   | 018A          | N-018A                             | Passaic River           |



# Passaic Valley Sewerage Commission Service Area System Characterization Report

| SPDES     | Permittee        | CSO<br>Number | Regulator Number<br>(Outfall Name)   | Receiving Water<br>Body                 |
|-----------|------------------|---------------|--------------------------------------|-----------------------------------------|
|           |                  |               | (Freeman St.)                        |                                         |
| NJ0108758 | Newark City      | 022A          | N-022A<br>(Roanoke Ave.)             | Passaic River                           |
| NJ0108758 | Newark City      | 023A          | N-023A<br>(Adams St.)                | Peripheral Ditch /<br>Elizabeth Channel |
| NJ0108758 | Newark City      | 025A          | N-025A<br>(Peddie St.)               | Peripheral Ditch /<br>Elizabeth Channel |
| NJ0108758 | Newark City      | 026A          | N-026A<br>(Queen St.)                | Queen Ditch                             |
| NJ0108758 | Newark City      | 027A/029A     | N-027A/029A<br>(Waverly)             | Peripheral Ditch /<br>Elizabeth Channel |
| NJ0108758 | Newark City      | 030A          | N-030A<br>(Ave. A)                   | Peripheral Ditch /<br>Elizabeth Channel |
| NJ0108898 | North Bergen MUA | 003A          | NB-003A<br>(W. 91 <sup>st</sup> St.) | Bellmans Creek                          |
| NJ0108898 | North Bergen MUA | 005A          | NB-005A<br>(W. 69 <sup>th</sup> St.) | Cromakill Creek                         |
| NJ0108898 | North Bergen MUA | 006A          | NB-006A<br>(W. 60 <sup>th</sup> St.) | Cromakill Creek                         |
| NJ0108898 | North Bergen MUA | 007A          | NB-007A<br>(51 <sup>st</sup> St.)    | Cromakill Creek                         |
| NJ0108898 | North Bergen MUA | 008A          | NB-008A<br>(43 <sup>rd</sup> St.)    | Cromakill Creek                         |
| NJ0108898 | North Bergen MUA | 009A          | NB-009A<br>(Paterson Plank Rd.)      | Cromakill Creek                         |
| NJ0108898 | North Bergen MUA | 010A          | NB-010A<br>(29 <sup>th</sup> St.)    | Cromakill Creek                         |
| NJ0108898 | North Bergen MUA | 011A          | NB-011A<br>(11 <sup>th</sup> St.)    | Cromakill Creek                         |
| NJ0108898 | North Bergen MUA | 014A          | NB-014A<br>(Paterson Plank Rd.)      | Cromakill Creek                         |
| NJ0108880 | Paterson City    | 001A          | P-001A<br>(Curtis Pl.)               | Passaic River                           |
| NJ0108880 | Paterson City    | 003A          | P-003A<br>(W. Broadway)              | Passaic River                           |
| NJ0108880 | Paterson City    | 005A          | P-005A<br>(Bridge St.)               | Passaic River                           |
| NJ0108880 | Paterson City    | 006A          | P-006A<br>(Montgomery St.)           | Passaic River                           |
| NJ0108880 | Paterson City    | 007A          | P-007A<br>(Straight St.)             | Passaic River                           |



| SPDES     | Permittee     | CSO<br>Number | Regulator Number<br>(Outfall Name) | Receiving Water<br>Body |
|-----------|---------------|---------------|------------------------------------|-------------------------|
| NJ0108880 | Paterson City | 010A          | P-010A<br>(Warren St.)             | Passaic River           |
| NJ0108880 | Paterson City | 013A          | P-013A<br>(E. Eleventh St.)        | Passaic River           |
| NJ0108880 | Paterson City | 014A          | P-014A<br>(Fourth Ave.)            | Passaic River           |
| NJ0108880 | Paterson City | 015A          | P-015A<br>(S.U.M. Park)            | Passaic River           |
| NJ0108880 | Paterson City | 016A          | P-016A<br>(Northwest St.)          | Passaic River           |
| NJ0108880 | Paterson City | 017A          | P-017A<br>(Arch St.)               | Passaic River           |
| NJ0108880 | Paterson City | 021A          | P-021A<br>(Bergen St.)             | Passaic River           |
| NJ0108880 | Paterson City | 022A          | P-022A<br>(Short St.)              | Passaic River           |
| NJ0108880 | Paterson City | 023A          | P-023A<br>(Second Ave.)            | Passaic River           |
| NJ0108880 | Paterson City | 024A          | P-024A<br>(Third Ave.)             | Passaic River           |
| NJ0108880 | Paterson City | 025A          | P-025A<br>(East 33rd Ave.)         | Passaic River           |
| NJ0108880 | Paterson City | 026A          | P-026A<br>(East 20th Ave.)         | Passaic River           |
| NJ0108880 | Paterson City | 027A          | P-027A<br>(Market St.)             | Passaic River           |
| NJ0108880 | Paterson City | 029A          | P-029A<br>(River St.)              | Passaic River           |
| NJ0108880 | Paterson City | 030A          | P-030A<br>(19 <sup>th</sup> Ave.)  | Passaic River           |
| NJ0108880 | Paterson City | 031A          | P-031A<br>(Interstate 80)          | Passaic River           |
| NJ0108880 | Paterson City | 032A          | P-032A<br>(Hudson St.)             | Passaic River           |
| NJ0108880 | Paterson City | 033A          | P-033A<br>(River St.)              | Passaic River           |

# **D.2.9** Green Infrastructure

Various green infrastructure and source control projects have been implemented across the PVSC service area. Several communities have implemented rain barrel give-away programs or workshops for residents. Rutgers University's Cooperative Extension Water Resource Program



has performed Green Infrastructure Feasibility Studies for almost all of the 48 municipalities within the service area. Several of the projects identified by the Rutgers' Feasibility Studies have already been implemented, including rain gardens, cisterns, and planter boxes. PVSC is designing three right-of-way raingarden demonstration projects and conducting green infrastructure design and construction workshops. In addition, municipal action teams have been formed in most of the combined sewer communities. These municipal action teams are advancing green infrastructure and sustainable practices within their communities. The Green Infrastructure projects will help to intercept runoff from impervious areas such as roads, driveways, parking lots, and roofs and redirect this flow to green infrastructure, thereby reducing the total wet weather flow to the combined sewer system. See **Table I-7** for the percent impervious area in the model area.

# **D.2.10** Areas Prone to Flooding and Sewer System Backups

Surface and street flooding can be caused by a multitude of conditions, only some of which can be attributed to the condition or capacity of the combined sewer collection system. Local departments of public works often respond to reports of flooding and investigate the likely cause. The format and degree of record keeping vary. Common causes include:

- Blockages within a sewer lateral
- Blockages within a sewer main
- Sewer collapse
- Root intrusion
- Clogged catch basins
- Riverine flooding
- Saturated soils
- Grease

- Internal plumbing issues
- Inadequate stormwater conveyance
- Surface ponding in low lying areas
- Groundwater or interflow entering basements
- Leaves and debris
- Missing or nonfunctioning backflow preventers

Heavy rainfall events can exacerbate these issues and create a perception that the conveyance system is inadequate, when often local maintenance issues or practices are at least in part responsible. The hydraulic models used for this System Characterization study do not have adequate detail or sophistication for investigating local flooding conditions. The simulations of the large trunk and interceptor systems show that flooding in the typical year is limited to a few locations where the peak hydraulic grade line exceeds the manhole rim elevation. However, municipal records and observations of local officials were used to develop and anecdotal assessment of flooding conditions within the service area combined sewered municipalities.

# Borough of East Newark

The Borough of East Newark does not have records indicating areas prone to flooding or sewer system backups.

# City of Bayonne

The City of Bayonne maintains a detailed record of water and sewer complaints, related investigations and corrective actions implemented. Majority of flooding instances have been found to be caused by blockages at catch basin inlets or clogged sewer. Based on the City's



records, the critical sections of Bayonne that are prone to flooding during heavy rain events are as follows:

- All Underpasses
- 1st Street and Avenue A
- 1st Street and JFK Boulevard
- 1st Street between Humphrey Avenue and Zabriskie Avenue
- 1st Street and Avenue C
- 10th Street and Avenue A
- 13th Street and Avenue C
- 16th Street and Avenue A
- 14th Street and Avenue E
- 22nd Street and Avenue A
- 27th Street and Avenue E
- 22nd Street and Avenue F
- 30th Street and Avenue A
- Avenue A and Lincoln Parkway
- 34th Street and Avenue E
- Hobart Avenue and Cottage Street
- 52nd Street and Avenue E
- 55th Street and Broadway
- 55th Street and Avenue C
- Avenue J and Hook Road
- Avenue J and 22<sup>nd</sup> Street
- Route 440 and Port Terminal Boulevard

# City of Newark

The following locations in the City of Newark have been identified as experiencing frequent sewer system backups:

- Ferry Street between Merchant Street and Adams Street. This area includes many restaurants and grease traps
- Elm Street between Jabez Street and Rome Street. This area includes many restaurants and grease traps
- Niagara Street between Magazine Street and Marne Street. This area includes many restaurants and grease traps
- Barber Street between Magazine Street and Marne Street. This area includes many restaurants and grease traps
- South Munn Avenue between South Orange Avenue and Pine Grove Terrace.
- Fabyan Place between Salvage Place and Buffington Street
- Wainwright Street between St. James Street and Lyons Avenue
- N. 12<sup>th</sup> Street between Abington Avenue and Bearsly Street
- 15 Avenue between Bruce Street and Springfield Avenue.



## City of Paterson

Street flooding occurs throughout the City of Paterson and is most often associated with trash interfering with flow to inlet structures. Additionally, large areas of the City are in the Passaic River Flood Inundation Zone and are subject to frequent river flooding.

The City maintains detailed records of sewer complaints, blockages, and remedial actions. Between 2006 and 2016, a total of 1724 sewer complaints were received and investigated. Complaints originated from homeowners, department of public works staff, police, the City's engineering department, and the public. The majority of complaints were found to be the result of internal plumbing problems. A total of 451 sewer main blockages were reported and resolved during the 10.25 years for which the data was tabulated from Sewer Division Field Reports. 30 chronic trouble areas have been identified from the historical sewer complaints. Of those locations, 13 have had heavy cleaning and internal video inspection completed, of which four have had main repairs completed to mitigate against future backups. A list of all of the blockage locations is shown in **Table D-3**.

| Chronic<br>Trouble Area | Location                                                         |
|-------------------------|------------------------------------------------------------------|
| 1                       | Lyon Street around Sassafras Street and East 16th Street         |
| 2                       | East 19th Street between 7th Avenue and 8th Avenue               |
| 3                       | East 16th Street between 7th Avenue and Warren Street            |
| 4                       | East 23rd Street between 7th Avenue and 6th Avenue               |
| 4                       | 7th Avenue between East 22nd Street and East 23rd Street         |
| 5                       | Straight Street between Park Avenue and 16th Avenue              |
| 6                       | 10th Avenue between East 26th Street and East 27th Street        |
| 7                       | Getty Avenue between Knickerbocker Avenue Michigan Avenue        |
|                         | 1st Avenue River Street between East 22nd Street                 |
| 8                       | Madison Avenue between 1st Avenue and 2nd Avenue                 |
|                         | East 19th Street between 1st Avenue and 2nd Avenue               |
| 9                       | Market Street between East 29th Street East 30th Street          |
| 10                      | Glover Avenue on Nagle Street until dead end                     |
| 11                      | East 18th Street between 6th Avenue 7th Avenue                   |
| 12                      | East 22nd Street between 8th Avenue 9th Avenue                   |
| 13                      | 21st Avenue near State Street                                    |
| 15                      | 20th Avenue between Gray Street Chestnut Street                  |
| 14                      | Jefferson Street between North 10th Street and Burhans Avenue    |
| 15                      | Edmund Avenue between Union Avenue and Hill Street (to dead end) |
| 16                      | East 25th Street between 10th Avenue and 11th Avenue             |
| 47                      | East 39th Street between 17th Avenue and 19th Avenue             |
| 17                      | East 38th Street between 17th Avenue and 19th Avenue             |

## **Table D-3: Chronic Sewer Blockage Locations**



|    | 17th Avenue East between 38th Street and East 39th Street      |
|----|----------------------------------------------------------------|
| 40 | Chestnut Street between 20th Avenue and Essex Street           |
| 18 | 21st Avenue to State Street                                    |
| 19 | Main Street between Barclay Street and Mary Street             |
| 20 | Garfield Avenue between Welcome Street and Haledon Avenue      |
| 21 | East Main Street between Amity Street and Holsman Street       |
| 22 | George Street between Getty Avenue West and Railway Avenue     |
| 23 | Preakness Avenue between Walnut Street and Maple Street        |
| 24 | Rossiter Avenue between Totowa Avenue and Union Avenue         |
| 25 | East 29th Street between 17th Avenue and 18th Avenue           |
| 26 | North Main Street between Clinton Street and Arch Street       |
| 27 | Elberon Avenue between Union Avenue and Crosby Avenue          |
| 28 | Knickerbocker Avenue between Vernon Avenue and Lakeview Avenue |
| 29 | Buffalo Avenue between Hazel Street and Paxton Street          |
| 30 | Circle Avenue between Temple Street and North 3rd Street       |

The area near Vreeland Avenue between 18<sup>th</sup> and 20<sup>th</sup> Avenues has a history of street flooding during high intensity rainfall dating back to at least the 1930's. A large diameter brick combined trunk sewer extends across the City from the PVSC Market Street Regulating Chamber to near the Clifton border. This trunk was constructed in 1893-1894 and was lined with gunite in the 1990's. A significant number of large diameter branch connections discharge to the trunk. Trunk size ranges from a nominal 36" in upstream segments to 84" at the Market Street Regulating Chamber. The trunk sewer is relieved to a 90" storm sewer at the intersection of Vreeland and 19th Avenues. The trunk sewer was cleaned and inspected in 2012 and found to be in very good condition with moderate deposits of debris. Additional cleanings have been performed on upstream segments and they too were found to be in very good condition.

Street flooding also occurs in the vicinity of Levine and Main Streets where a natural drainage course flows from Clifton across Hazel Street within the NJ Transit right-of-way and is connected to the City combined sewer near that intersection. Flooding may be a result of the maintenance of the inlet structure rather than surcharging of the trunk sewer.

## Town of North Bergen

North Bergen experiences regular flooding from Bellman's Creek in the areas of 91<sup>st</sup> Street and Railroad Avenue. The combined sewer system is known to surcharge along 83<sup>rd</sup> Street due to back-ups in the main under Westside Avenue. The property on the southeast corner of 86<sup>th</sup> Street and Tonnelle Avenue has reported issues when downstream blockages causes surcharging that leaks out of the pipe joints and into the parking lot of this property. The area west of Tonnelle Avenue on 86<sup>th</sup> Street can also experience some back-ups due to the topography of the area. Throughout the Town, complaints are typically found to be the result of blockages in either the lateral or the sewer main. Once these blockages are cleared the issue is usually resolved.



## Town of Harrison

Two areas within the Town of Harrison experience accumulations of grease. Harrison Avenue, between 5th Street and Rodgers Blvd., and Rodgers Blvd., between Davis Street and Cross Street, these areas receive more frequent inspection and cleaning. Sewer system induced flooding is not reported as an issue elsewhere within the town.

## Town of Kearny

The Town of Kearny experiences regular tidal flooding in the areas east of Schuyler Avenue and west of Belgrove Drive. Records obtained from the Town of Kearny department of public works related to sewer blockages and backups for the years 2013, 2014, and 2015 indicate an average of about 30 backups per year occurring throughout the town. The streets listed in **Table D-4** below are subject to flooding due to their proximity to the Newark Bay or the Passaic River.

| East of Schuyler Avenue |   | West of Belgrow   | ve Drive |
|-------------------------|---|-------------------|----------|
|                         |   |                   |          |
| Belleville Tpke         | 3 | Alpine Pl         | 1        |
| Bergen Ave              | 4 | Belgrove Drive    | 2        |
| Dukes St                | 2 | Jefferson Ave     | 1        |
| East Midland Ave        | 9 | Hillcrest Road    | 1        |
| Harrison Ave            | 1 | Peden Ter         | 4        |
| Hoyt St                 | 3 | South Midland Ave | 6        |
| Rizzolo Road            | 1 | Stewart Ave       | 1        |
| Schuyler Ave            | 5 | Wilkinson Ter     | 1        |
| Tappan St               | 1 | William St        | 1        |
|                         |   | Webster Ave       | 3        |

# SECTION E - COLLECTION OF PRECIPITATION AND SEWER FLOW MONITORING DATA

# **E.1 INTRODUCTION**

This section presents information on the collection of precipitation and sewer flow data to meet the requirements of Paragraphs II.A.C.1.a and b of the USEPA's CSO Control Policy.

Rainfall and flow monitoring data were collected from April 2016 to August 2016. After the collected data was reviewed and analyzed, the data was deemed adequate to facilitate the development, calibration and validation of the Hydrologic and Hydraulic (H&H) Model. This section contains a summary of the rainfall and flow monitoring data and discusses the network of rainfall and flow monitoring instrumentation, and describes how the data collected for the rainfall and flow monitoring program was analyzed for use in the H&H Model calibration and validation.

# E.2 SEWER FLOW MONITORING PROGRAM

PVSC owns and operates a flow monitoring network across the PVSC Service Area. The monitoring network includes various types of flow meters located throughout PVSC's Service Area, at the WRRF, in each of the Pump Stations, and at the tie-in points where other municipal collection systems tie-into the collection system. There are over 70 permanent flow meters out of which 58 were used for dry weather flow analysis and calibration, which includes 38 existing flow meters in the separate sewer areas (outside the CSO area), 14 existing flow meters at pump stations and one existing flow meter at WRRF were used for the calibration and validation of the H&H Model. In addition, temporary flow meters were installed at 21 new locations to characterize surface runoff from the combined area and CSO discharges. The locations of flow meters installed specifically for the flow monitoring program and the H&H Model calibration and validation can be categorized into the following four categories:

- 1. Located on the influent pipe to CSO regulators to measure the influent flow to CSO regulator chambers prior to diversion to the interceptor or outfall, the metered flows can be used for combined area runoff calibration.
- 2. Located on the effluent pipe of CSO regulators to measure the intercepted flows from the regulator entering the interceptor and downstream collection system, the metered flows can be used for regulator calibration.
- 3. Located on the overflow pipe of CSO regulators to measure the CSO overflows, the metered CSO flows can be used for regulator calibration.
- 4. Located in the main interceptors to measure level and flows in the major interceptors, the metered flows can be used for interceptor calibration.

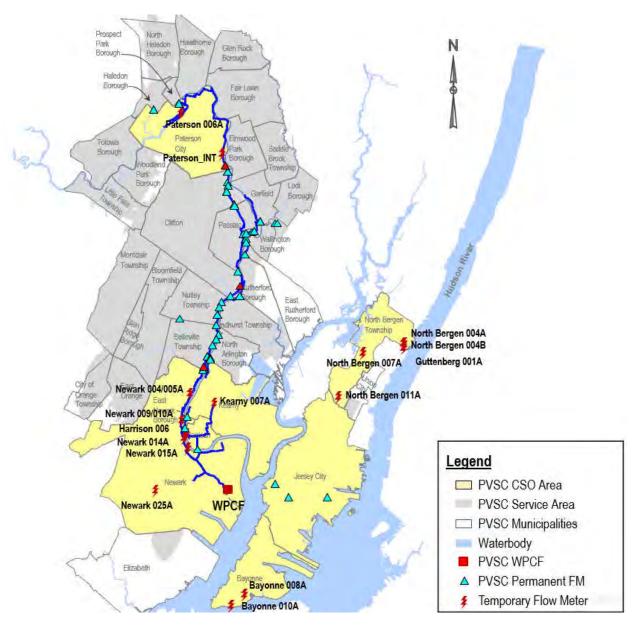
**Table E-1** lists the locations and categories of the 21 temporary flow meters. Five of the meters were placed on the regulator influent pipe. Two of the meters were placed on the regulator effluent pipe. Thirteen of the meters were placed in the outfall pipe. The final meter was placed on the interceptor toward the downstream end of Paterson.






Figure E-1 shows the locations of the flow meters, including both permanent and temporary flow meters, which were used for H&H Model calibration and validation.

| Meter ID        | Municipality | Location                | Category |
|-----------------|--------------|-------------------------|----------|
| Bayonne 008A OF | Bayonne      | East 5th and Ingham Ave | Outfall  |
| Bayonne 010A OF | Bayonne      | W 1st and Avenue C      | Outfall  |


| Table E-1: | Temporary | Flow Meter | Locations |
|------------|-----------|------------|-----------|
|------------|-----------|------------|-----------|



#### Passaic Valley Sewerage Commission Service Area System Characterization Report

| Meter ID                   | Municipality | Location                                            | Category           |
|----------------------------|--------------|-----------------------------------------------------|--------------------|
| Guttenberg 001A            | Guttenberg   | 70th and JFK Blvd                                   | Outfall            |
| Harrison 006 Influent      | Harrison     | Bergen and Dey                                      | Regulator Influent |
| Kearny 007A                | Kearny       | King and Ivy Street                                 | Outfall            |
| Newark 004/005A            | Newark       | Herbert Place under elevated Hwy                    | Outfall            |
| Newark 009/010 OF<br>North | Newark       | Clay Street - inside facility                       | Outfall            |
| Newark 009/010 OF<br>South | Newark       | Clay Street - inside facility                       | Outfall            |
| Newark 015A                | Newark       | City Dock                                           | Outfall            |
| Newark 014A                | Newark       | Saybrook in pull off                                | Outfall            |
| Newark 025A East           | Newark       | Peddie - access through parking, near<br>railroad   | Regulator Influent |
| Newark 025A West           | Newark       | Peddie - access through parking, near<br>railroad   | Regulator Influent |
| Newark 025A Regulated      | Newark       | Peddie - access through parking, near<br>railroad   | Regulator Effluent |
| North Bergen 004A          | North Bergen | 73 <sup>rd</sup> and Hudson County 693              | Outfall            |
| North Bergen 004B          | North Bergen | Near 74th and Hudson County in grassy lot           | Outfall            |
| North Bergen 007A          | North Bergen | 53rd and Tonnelle Ave in Concrete Plant<br>driveway | Outfall            |
| North Bergen 011A          | North Bergen | 1101 Tonnelle Ave                                   | Outfall            |
| Paterson 006A East         | Paterson     | Montgomery and River St                             | Regulator Influent |
| Paterson 006A West         | Paterson     | Montgomery and River St                             | Regulator Influent |
| Paterson 006A<br>Regulated | Paterson     | Montgomery and River St                             | Regulator Effluent |
| Paterson_INT               | Paterson     | McLean Boulevard at Cemetery entrance               | Interceptor        |

#### Passaic Valley Sewerage Commission Service Area System Characterization Report



**Figure E-1: Flow Meter Location** 



The availability of metering data from the temporary flow meters are shown in **Figure E-2**, highlighted dots mean no data was collected or the meter was not in service for the periods. Flow data is available for most of the temporary meters for period of 5/20/16 to 8/5/16.

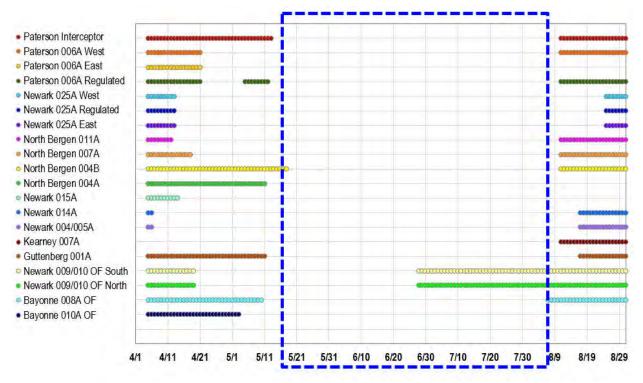
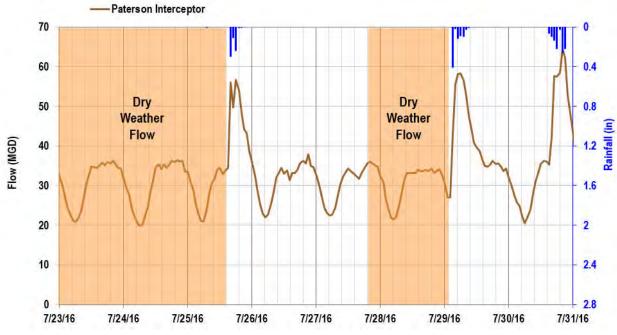
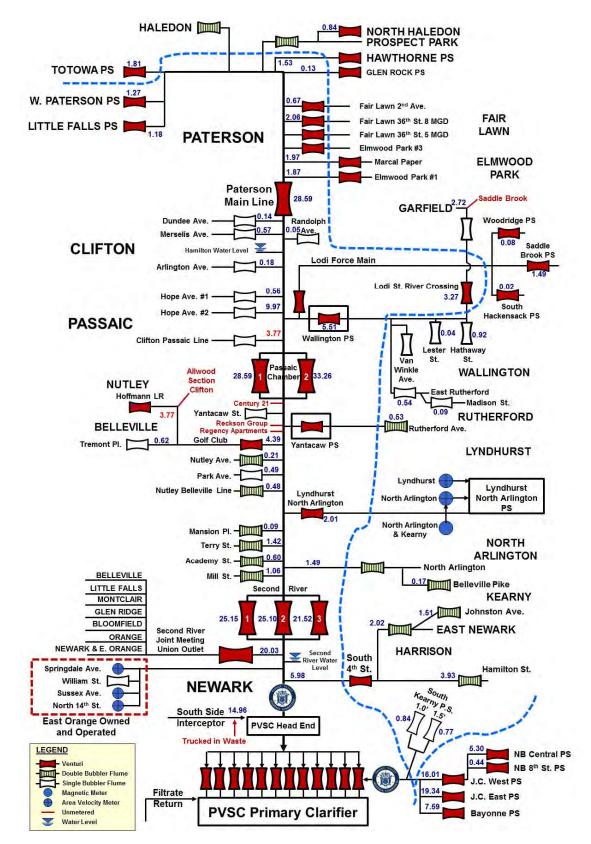


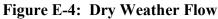

Figure E-2: Missing Data period of Temporary Flow Meter Locations

## E.3 DRY WEATHER FLOW (DWF) ANALYSIS

A "dry weather" condition was defined as a period with no precipitation that begins 48 hours after the last wet weather event ends and lasts until the beginning of the next precipitation event (i.e. the rain gauge read a 0.01 inch value). Dry weather flow (DWF) periods based on this definition are illustrated in the hydrograph shown in **Figure E-3**.





Figure E-3: Hydrograph showing Dry Weather Flow


Average dry weather flow was calculated by averaging the monitored flows from the dry weather periods identified in the rainfall data analysis. The overall and monthly DWFs for all monitoring sites were analyzed.

The DWFs for the monitoring period (April 1, 2016 to August 31, 2016) are also shown in the schematic in **Figure E-4**. Each value displayed next to each flow meter represents the DWF overall average (in MGD) for the monitoring period.



#### Passaic Valley Sewerage Commission Service Area System Characterization Report







The DWFs vary throughout the day, with the highest flows normally occurring around noon and the lowest rates between midnight and early morning. Flow data from the dry weather periods were used to develop a diurnal pattern for each flow meter. Diurnal patterns were analyzed for both weekdays and weekends. In the plot shown on **Figure E-5**, the weekend DWF peak and valley have a 3-hour lag compared to the weekday pattern. The weekday and weekend diurnal patterns, and the overall annual average values discussed above provided the bases of dry weather inputs for the model.

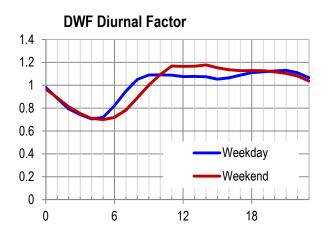



Figure E-5: Weekend and Weekday Dry Weather Flow Diurnal Pattern

# E.4 WET WEATHER FLOW ANALYSIS

Wet weather flows are the combination of dry weather flows and additional flows that enter the system during wet weather conditions. The additional flows are from combined area surface runoff and RDII. Inflow normally occurs when rainfall enters the system through direct connections such as roof leaders, yard drains, catch basins, sump pumps, manhole covers and frame seals or cross connections with storm sewers. Inflow is usually recognized graphically by large magnitude, short duration spikes immediately following a rain event. Infiltration occurs during wet weather conditions when water enters a sewer system from the ground through means which include, but not limited to, deteriorated pipes, pipe joints, connections, or manholes. It is significantly influenced by the size and duration of the rainfall event. Infiltration is often recognized graphically by a gradual increase in flow after a wet weather event. The increased flow typically sustains for a short period after rainfall has stopped and then gradually drops off.

The peaking factor represents the ratio of the peak wet weather flow to the average dry weather flow. Usually, an hourly peaking factor is used to represent the wet weather peaking factor. Peaking factors were analyzed for each flow monitoring site. The peaking factors in the separate sewer area can be used to determine the extent of the RDII within a particular basin. **Figure E-6** is an example of the flow monitoring site showing the flow response to precipitations at the monitoring location. Flow volume depicted by the area between the red line (the metered flow hydrograph) and the grey line (the estimated dry weather flow based on metering data) is the wet weather volume corresponded to the rainfall event, and the max flow is the peak flow of the wet weather event. An hourly peaking factor of approximately 3.0 was estimated for the site, which is reasonable for a sanitary sewer collection system. The flow increase shortly after the rainfall



indicates immediate inflow into the collection pipes, and the long tail back to the base flow indicates infiltration occurrence at the site as well.

Wet weather volume and peak flow were analyzed for selected wet weather events for all temporary metering locations and permanent metering locations with quality data. **Table E-2** shows the wet weather volumes and peaks for the four events used in model calibration for all the temporary metering locations. Wet weather event volume and peak for some of the permanent metering locations can be viewed in model calibration plots **Figure I-27** to **Figure I-50**. More plots can be found in **Appendix D** (Model Calibration Result).

|                                                                      |                    | Event 1<br>5/30/16 0:00 to<br>5/30/16 12:00 |                       | Event 2<br>7/25/16 12:00 to<br>7/26/16 0:00 |         | Event 3<br>7/29/16 0:00 to<br>7/29/16 12:00 |         | Event 4<br>7/30/16 12:00 to<br>8/1/16 12:00 |         |  |  |
|----------------------------------------------------------------------|--------------------|---------------------------------------------|-----------------------|---------------------------------------------|---------|---------------------------------------------|---------|---------------------------------------------|---------|--|--|
| Metering<br>Site                                                     | Category           | Flow<br>Volume<br>(MG)                      | Flow<br>Peak<br>(MGD) | Flow<br>Volume<br>(MG)                      | Flow    | Flow<br>Volume<br>(MG)                      | Flow    | Flow<br>Volume<br>(MG)                      | Flow    |  |  |
| PT_INT                                                               | Interceptor        | 20.84                                       | 54.5                  | 22.36                                       | 64.0    | 23.22                                       | 61.1    | 82.29                                       | 78.1    |  |  |
| PT_6A_INF (combination of Paterson 006A East and Paterson 006A West) |                    |                                             |                       |                                             |         |                                             |         |                                             |         |  |  |
|                                                                      | Regulator Influent | 2.52                                        | 11.6                  | 4.28                                        | 35.0    | 4.06                                        | 23.9    | 11.23                                       | 49.4    |  |  |
| PT_6A_Eff                                                            | Regulator Effluent | 2.78                                        | 14.0                  | 3.38                                        | 11.4    | 3.18                                        | 18.3    | 8.65                                        | 12.7    |  |  |
| NE_25A_E                                                             | Regulator Influent | 8.25                                        | 87.3                  | 4.52                                        | 126.7   | 8.50                                        | 87.7    | 15.29                                       | 138.0   |  |  |
| NE_25A_W                                                             | Regulator Influent | 13.90                                       | 135.4                 | 16.15                                       | 284.9   | 14.88                                       | 118.9   | 35.06                                       | 190.7   |  |  |
| NE_25A_Eff                                                           | Regulator Effluent | 22.03                                       | 90.6                  | 13.93                                       | 81.4    | 19.38                                       | 72.4    | 37.02                                       | 55.0    |  |  |
| HA_06_Inf                                                            | Regulator Influent | 0.57                                        | 5.8                   | 0.60                                        | 10.1    | 0.37                                        | 3.9     | 0.78                                        | 6.0     |  |  |
| NE_04&05A                                                            | Outfall            | 0.70                                        | 13.0                  | 0.96                                        | 36.3    | 0.55                                        | 7.6     | 0.79                                        | 14.5    |  |  |
| NE_09&10_S                                                           | Outfall            | 12.30                                       | 854.0                 | No Data                                     | No Data | No Data                                     | No Data | No Data                                     | No Data |  |  |
| NE_09&10_N                                                           | Outfall            | 4.04                                        | 49.6                  | No Data                                     | No Data | No Data                                     | No Data | No Data                                     | No Data |  |  |
| NE_14A                                                               | Outfall            | 4.44                                        | 50.6                  | 6.26                                        | 125.1   | 4.13                                        | 54.7    | 6.05                                        | 69.8    |  |  |
| NE_15A                                                               | Outfall            | 0.33                                        | 29.1                  | 6.40                                        | 137.6   | No Data                                     | No Data | 0.20                                        | 19.3    |  |  |
| KE_07A                                                               | Outfall            | 2.19                                        | 33.9                  | 2.42                                        | 55.9    | 1.78                                        | 24.9    | 3.43                                        | 45.7    |  |  |
| BA_08A                                                               | Outfall            | 0.66                                        | 10.0                  | 1.21                                        | 15.2    | 0.31                                        | 9.0     | 0.65                                        | 11.8    |  |  |
| BA_10A                                                               | Outfall            | 0.48                                        | 7.8                   | 0.86                                        | 9.7     | 0.19                                        | 5.9     | 0.69                                        | 10.3    |  |  |
| NB_11A                                                               | Outfall            | 0.30                                        | 14.5                  | 0.28                                        | 11.8    | 0.01                                        | 0.6     | 0.08                                        | 1.8     |  |  |
| NB_07A                                                               | Outfall            | 0.34                                        | 8.9                   | 0.20                                        | 4.7     | 0.17                                        | 1.9     | 0.24                                        | 3.4     |  |  |

Table E-2: Event Wet Weather Volume and Peak for Temporary Metering Locations

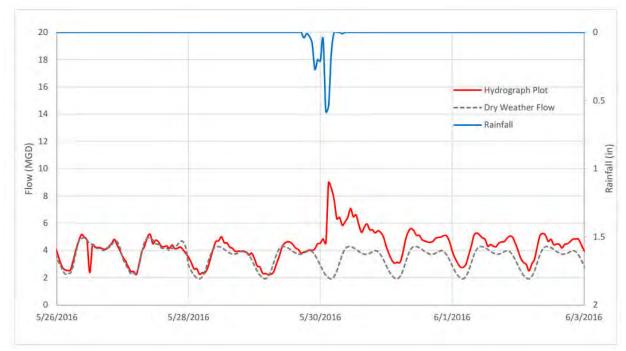



Figure E-6: Flow Monitoring Site Wet Weather Analysis (Example Plot)

# E.5 SEWER FLOW MONITORING DATA SUMMARY

The temporary flow meters measured flow, level and velocity data for each flow monitoring site at 5-minute intervals. Data was converted to 15-minute intervals for further analysis. The PVSC permanent flow metered data was received in 15-minute intervals. Meter data was screened prior to use, abnormal flow spikes (example: second river crossing) were smoothed out as needed by removing erroneous spikes or dips in the metering data and interpolating between the remaining data points. Metering data was analyzed for dry weather flows (DWF) and wet weather flows (WWF) for each monitoring site. Weekday and weekend DWF diurnal patterns were also developed.

The DWF was ultimately used as inputs into the model. Overall average DWFs, average monthly DWFs, and weekday and weekend diurnal patterns were input into the model for each flow meter. The WWF were used to calibrate the model output. Model data was compared side by side with metered data for each wet weather event for each flow meter.

# E.6 RAINALL MONITORING LOCATIONS

Precipitation data for the flow monitoring period were obtained from NJ Weather, National Weather Service Automated Surface Observing System (NWS ASOS), and Citizen Weather Observer Program (CWOP). Rain gauge locations are shown in **Figure E-7**. Rain gauge data source, ID, and data time intervals are also included. NWS ASOS rain gauges (Newark and New York) have 1-min rainfall data, NJ Weather rain gauges (Horthorne, Lyndhurst, and Jersey City) have 5-min rainfall data, and CWOP rain gauges have rainfall data in 10-50 minute intervals. All rainfall data was converted to 5-min intervals for consistency. Rainfall distributions for these



eight rain gauges are shown in **Figure E-8**. Significant spatial variance was observed for these rain gauges. Almost half of the rain gauges (Hawthorn, Lyndhurst, Jersey City) are missing data in period of 6/9/16 to 7/24/16. These data gaps needed to be considered when selecting rainfall events for model calibration.

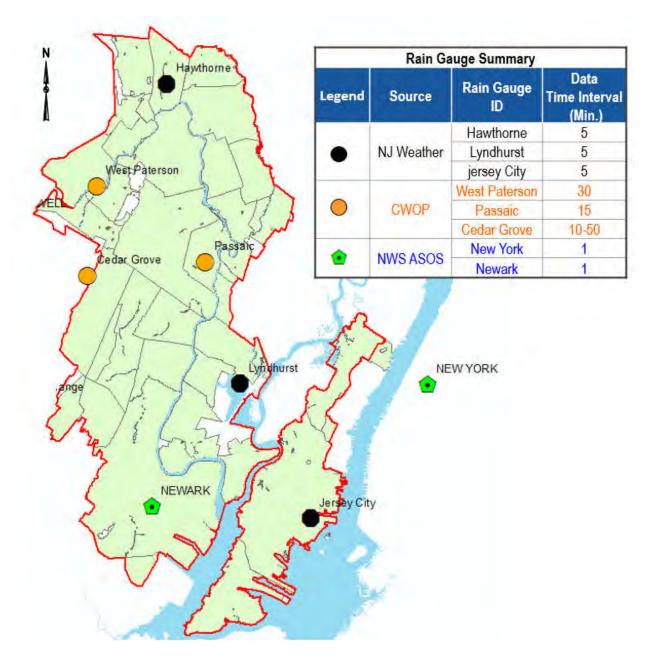
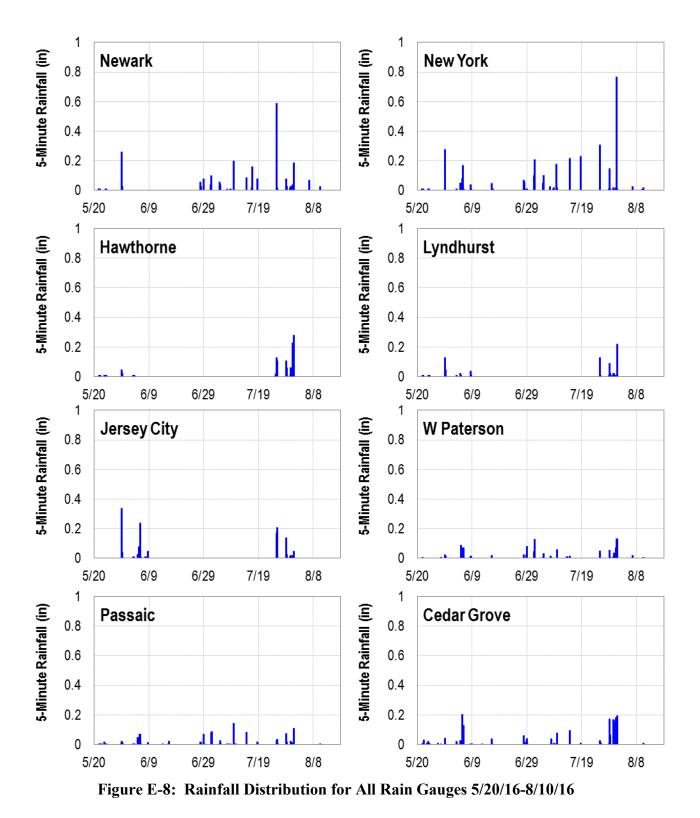




Figure E-7: Rain Gauge Locations



#### Passaic Valley Sewerage Commission Service Area System Characterization Report





# E.7 RAINFALL EVENT ANALYSIS

Rainfall events were analyzed based on an inter-event time of 6 hours. Newark Airport rainfall records were used to identify the top 10 rainfall events because this rain gauge covers the largest portion of the combined area in the PVSC sewer service area. Top 10 rainfall events at Newark Airport are listed in **Table E-3**. Rainfall depths at the other rain gauges are also listed in the table for comparison. Only the top 4 events have rainfall data available from all rain gauges.

| Rainfall | Newark | New York | Hawthorne | Lyndhurst | Jersey City | W Paterson | Passaic | Cedar Grove |
|----------|--------|----------|-----------|-----------|-------------|------------|---------|-------------|
| Event    | (In)   | (In)     | (In)      | (ln)      | (In)        | (In)       | (In)    | (In)        |
| 7/25/16  | 1.84   | 1.00     | 0.70      | 0.74      | 1.81        | 0.67       | 0.34    | 0.42        |
| 5/29/16  | 1.60   | 1.65     | 0.63      | 1.25      | 1.79        | 0.46       | 0.55    | 0.59        |
| 7/30/16  | 1.07   | 1.29     | 3.08      | 1.60      | 0.60        | 2.33       | 1.84    | 2.79        |
| 7/28/16  | 0.87   | 1.09     | 1.14      | 1.17      | 1.10        | 0.78       | 1.10    | 1.58        |
| 7/4/16   | 0.63   | 1.15     | NA        | NA        | NA          | 0.48       | 0.48    | 0.00        |
| 7/16/16  | 0.58   | 0.00     | NA        | NA        | NA          | 0.00       | 0.00    | 0.00        |
| 7/9/16   | 0.49   | 0.53     | NA        | NA        | NA          | 0.53       | 0.66    | 0.39        |
| 6/28/16  | 0.40   | 0.04     | NA        | NA        | NA          | 0.72       | 0.39    | 0.69        |
| 6/27/16  | 0.38   | 0.54     | NA        | NA        | NA          | 0.26       | 0.27    | 0.54        |
| 7/18/16  | 0.23   | 0.35     | NA        | NA        | NA          | 0.00       | 0.07    | 0.09        |

Table E-3: Top 10 Rainfall Events (Volume Based), 5/20/16-8/10/16

Newark Airport rainfall was compared to the NOAA's Precipitation Frequency Table to estimate the return frequency of these events (**Figure E-9**).

- Event 1 on May 29, 2016 is a short and intense event, it is a 1 to 2-year storm in 1 hour and less than 1-year storm beyond 1 hour.
- Event 2 on July 25, 2016 is another short and intense event, it is a 5-year storm in 1 hour and a 2-year storm in 3 hours.
- Event 3 on July 29, 2016 and Event 4 on July 30, 2016 are both less than 1-year storm events.



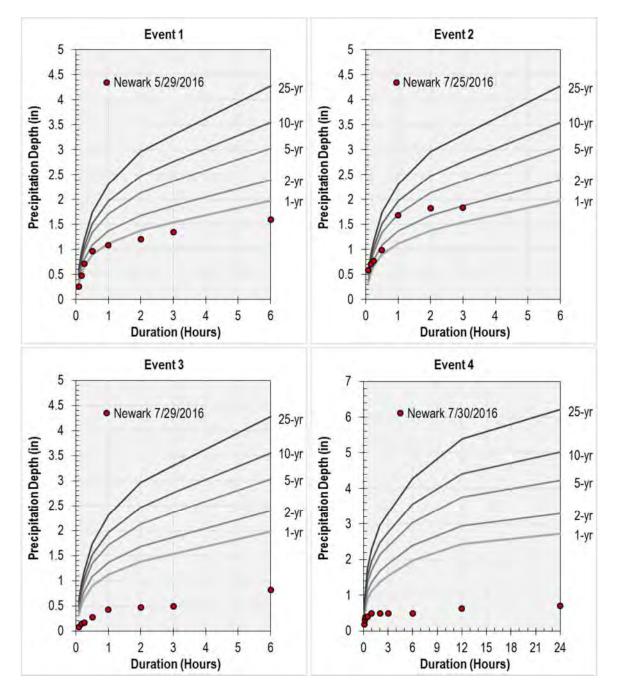



Figure E-9: Depth-Duration-Frequency for Top 4 Rainfall Events

# **E.8** COLLECTION OF PVSC WATER RESOURCES RECOVERY FACILITY OPERATIONAL DATA

In addition to flow data collected from the flow meters located in the collection system, flow data from the PVSC WRRF influent flow meter was obtained for the same time period. A hydrograph of the 15-minute plant flow is shown in and average daily influent flows are provided in **Table E-4**.



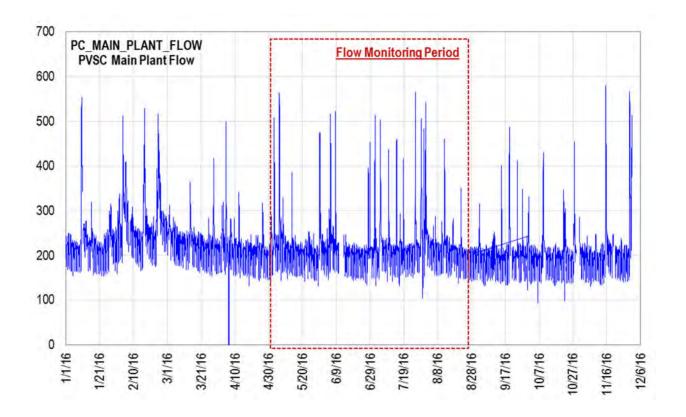



Figure E-10: PVSC WRRF Influent Flow



| Date    | Avg<br>WRRF<br>Inf<br>(MGD) | Date    | Avg.<br>WRRF<br>Inf.<br>(MGD) | Date    | Avg.<br>WRRF<br>Inf.<br>(MGD) | Date    | Avg.<br>WRRF<br>Inf.<br>(MGD) |   | Date    | Avg.<br>WRRF<br>Inf.<br>(MGD) |
|---------|-----------------------------|---------|-------------------------------|---------|-------------------------------|---------|-------------------------------|---|---------|-------------------------------|
| 4/30/16 | 201                         | 5/25/16 | 196                           | 6/18/16 | 194                           | 7/12/16 | 198                           |   | 8/5/16  | 212                           |
| 5/1/16  | 213                         | 5/26/16 | 195                           | 6/19/16 | 194                           | 7/13/16 | 197                           |   | 8/6/16  | 211                           |
| 5/2/16  | 197                         | 5/27/16 | 194                           | 6/20/16 | 196                           | 7/14/16 | 245                           |   | 8/7/16  | 202                           |
| 5/3/16  | 315                         | 5/28/16 | 193                           | 6/21/16 | 197                           | 7/15/16 | 207                           | l | 8/8/16  | 203                           |
| 5/4/16  | 215                         | 5/29/16 | 186                           | 6/22/16 | 195                           | 7/16/16 | 212                           |   | 8/9/16  | 192                           |
| 5/5/16  | 211                         | 5/30/16 | 315                           | 6/23/16 | 194                           | 7/17/16 | 205                           |   | 8/10/16 | 212                           |
| 5/6/16  | 306                         | 5/31/16 | 213                           | 6/24/16 | 195                           | 7/18/16 | 230                           |   | 8/11/16 | 208                           |
| 5/7/16  | 230                         | 6/1/16  | 208                           | 6/25/16 | 192                           | 7/19/16 | 205                           |   | 8/12/16 | 255                           |
| 5/8/16  | 241                         | 6/2/16  | 205                           | 6/26/16 | 190                           | 7/20/16 | 201                           |   | 8/13/16 | 212                           |
| 5/9/16  | 216                         | 6/3/16  | 203                           | 6/27/16 | 197                           | 7/21/16 | 200                           |   | 8/14/16 | 203                           |
| 5/10/16 | 211                         | 6/4/16  | 213                           | 6/28/16 | 245                           | 7/22/16 | 205                           |   | 8/15/16 | 201                           |
| 5/11/16 | 204                         | 6/5/16  | 302                           | 6/29/16 | 240                           | 7/23/16 | 200                           |   | 8/16/16 | 206                           |
| 5/12/16 | 203                         | 6/6/16  | 237                           | 6/30/16 | 199                           | 7/24/16 | 198                           |   | 8/17/16 | 218                           |
| 5/13/16 | 236                         | 6/7/16  | 217                           | 7/1/16  | 254                           | 7/25/16 | 269                           |   | 8/18/16 | 204                           |
| 5/14/16 | 210                         | 6/8/16  | 262                           | 7/2/16  | 235                           | 7/26/16 | 235                           |   | 8/19/16 | 197                           |
| 5/15/16 | 205                         | 6/9/16  | 210                           | 7/3/16  | 193                           | 7/27/16 | 208                           |   | 8/20/16 | 193                           |
| 5/16/16 | 202                         | 6/10/16 | 204                           | 7/4/16  | 204                           | 7/28/16 | 205                           |   | 8/21/16 | 213                           |
| 5/17/16 | 199                         | 6/11/16 | 205                           | 7/5/16  | 308                           | 7/29/16 | 322                           |   | 8/22/16 | 205                           |
| 5/18/16 | 201                         | 6/12/16 | 202                           | 7/6/16  | 212                           | 7/30/16 | 250                           |   | 8/23/16 | 193                           |
| 5/19/16 | 200                         | 6/13/16 | 195                           | 7/7/16  | 209                           | 7/31/16 | 258                           |   | 8/24/16 | 192                           |
| 5/20/16 | 197                         | 6/14/16 | 197                           | 7/8/16  | 206                           | 8/1/16  | 290                           |   | 8/25/16 | 193                           |
| 5/21/16 | 199                         | 6/15/16 | 197                           | 7/9/16  | 205                           | 8/2/16  | 222                           |   | 8/26/16 | 192                           |
| 5/22/16 | 212                         | 6/16/16 | 204                           | 7/10/16 | 246                           | 8/3/16  | 217                           |   | 8/27/16 | 190                           |
| 5/23/16 | 203                         | 6/17/16 | 198                           | 7/11/16 | 200                           | 8/4/16  | 214                           |   | 8/28/16 | 189                           |
| 5/24/16 | 211                         |         |                               |         |                               |         |                               |   |         |                               |

# Table E-4: Average Daily WRRF Influent Flow

# E.9 WET WEATHER EVENT SELECTION FOR MODEL CALIBRATION / VALIDATION

Based on the rainfall data availability and flow monitoring data analysis, the top 4 rainfall events shown in **Table E-3** were selected for model calibration and validation. These four events cover variations in terms of rainfall depth, intensity, duration, and antecedent conditions. Detailed rainfall event information for these events, including duration, depth, maximum intensity and average intensity, are summarized for each rainfall gauge in **Table E-5**.

|                        | Event 1       | Event 2       | Event 3      | Event 4       | Event 1      | Event 2       | Event 3       | Event 4       |
|------------------------|---------------|---------------|--------------|---------------|--------------|---------------|---------------|---------------|
|                        |               | Newa          | ark          |               |              | New `         | York          |               |
| Rainfall Start         | 5/29/16 23:45 | 7/25/16 16:05 | 7/29/16 0:15 | 7/30/16 14:10 | 5/30/16 0:10 | 7/25/16 15:15 | 7/29/16 0:05  | 7/30/16 14:30 |
| Rainfall End           | 5/30/16 5:15  | 7/25/16 18:50 | 7/29/16 8:30 | 7/31/16 22:35 | 5/30/16 5:30 | 7/25/16 17:45 | 7/29/16 8:25  | 7/31/16 23:50 |
| Duration (Hour)        | 5.7           | 3.0           | 8.5          | 32.7          | 5.6          | 2.7           | 8.6           | 33.6          |
| Total Depth            | 1.60          | 1.84          | 0.87         | 1.07          | 1.65         | 1.00          | 1.09          | 1.29          |
| Avg. Intensity (in/hr) | 0.28          | 0.61          | 0.10         | 0.03          | 0.30         | 0.36          | 0.13          | 0.04          |
| Max Intensity (in/hr)  | 1.09          | 1.68          | 0.43         | 0.49          | 1.09         | 0.67          | 0.64          | 0.83          |
|                        |               | Hawtho        | rne          |               |              | Lyndh         | urst          |               |
| Rainfall Start         | 5/30/16 0:20  | 7/25/16 15:45 | 7/29/16 0:40 | 7/30/16 15:15 | 5/30/16 0:55 | 7/25/16 17:25 | 7/29/16 1:15  | 7/30/16 15:35 |
| Rainfall End           | 5/30/16 8:10  | 7/25/16 20:40 | 7/29/16 8:45 | 7/31/16 22:00 | 5/30/16 9:55 | 7/25/16 19:45 | 7/29/16 9:15  | 8/1/16 0:35   |
| Duration (Hour)        | 8.1           | 5.2           | 8.3          | 31.0          | 9.2          | 2.6           | 8.2           | 33.2          |
| Total Depth            | 0.63          | 0.70          | 1.14         | 3.08          | 1.25         | 0.74          | 1.17          | 1.60          |
| Avg. Intensity (in/hr) | 0.08          | 0.14          | 0.14         | 0.10          | 0.14         | 0.29          | 0.14          | 0.05          |
| Max Intensity (in/hr)  | 0.29          | 0.32          | 0.46         | 1.13          | 0.65         | 0.70          | 0.39          | 0.70          |
|                        |               | Jersey        | City         |               |              | W Pate        | erson         |               |
| Rainfall Start         | 5/30/16 1:10  | 7/25/16 17:10 | 7/29/16 1:05 | 7/30/16 15:10 | 5/30/16 0:30 | 7/25/16 16:05 | 7/29/16 3:05  | 7/30/16 15:35 |
| Rainfall End           | 5/30/16 6:35  | 7/25/16 21:50 | 7/29/16 9:25 | 8/1/16 0:40   | 5/30/16 6:25 | 7/25/16 20:30 | 7/29/16 9:30  | 7/31/16 22:00 |
| Duration (Hour)        | 5.7           | 4.9           | 8.6          | 33.7          | 6.2          | 4.7           | 6.7           | 30.7          |
| Total Depth            | 1.79          | 1.81          | 1.10         | 0.60          | 0.46         | 0.67          | 0.78          | 2.33          |
| Avg. Intensity (in/hr) | 0.32          | 0.37          | 0.13         | 0.02          | 0.07         | 0.14          | 0.12          | 0.08          |
| Max Intensity (in/hr)  | 1.25          | 1.67          | 0.74         | 0.18          | 0.21         | 0.30          | 0.37          | 0.81          |
|                        |               | Pass          | aic          |               | Cedar Grove  |               |               |               |
| Rainfall Start         | 5/29/16 17:35 | 7/25/16 16:00 | 7/29/16 1:10 | 7/30/16 15:30 | 5/30/16 0:15 | 7/25/16 17:20 | 7/28/16 23:20 | 7/30/16 15:40 |
| Rainfall End           | 5/30/16 10:30 | 7/25/16 23:55 | 7/29/16 8:50 | 8/1/16 1:00   | 5/30/16 5:45 | 7/26/16 2:55  | 7/29/16 9:25  | 8/1/16 1:05   |
| Duration (Hour)        | 17.2          | 8.2           | 7.9          | 33.7          | 5.7          | 9.8           | 10.3          | 33.7          |
| Total Depth            | 0.55          | 0.34          | 1.10         | 1.84          | 0.59         | 0.42          | 1.58          | 2.79          |
| Avg. Intensity (in/hr) | 0.03          | 0.04          | 0.14         | 0.05          | 0.10         | 0.04          | 0.15          | 0.08          |
| Max Intensity (in/hr)  | 0.19          | 0.21          | 0.51         | 0.68          | 0.26         | 0.32          | 0.72          | 0.58          |

## Table E-5: Calibration and Validation Rainfall Events

# E.10 SUMMARY

The rainfall and flow monitoring data analysis was performed to provide adequate data for the development, calibration and validation of the H&H and Water Quality Models. Rainfall data was collected for rain gauges throughout the Model Area. The Newark Airport rain gauge was analyzed to determine wet weather events used for model calibration. The flow meter data was analyzed based on the rainfall patterns and then input into the model as overall annual average DWF, average monthly DWFs, and weekday and weekend diurnal curves for each meter in the

combined area. To calibrate the model, model-generated data was compared to the metered-data hydrographs for each wet weather event for each flow meter.



# SECTION F - CHARACTERISTICS OF THE RECEIVING WATERS

Characteristics of the receiving waters include description of the receiving waters designated use, shoreline characteristics, identification of the waters on the impaired waters of NJ and a summary of the sensitive areas within the receiving water. The USEPA CSO Control Policy Guideline requires that highest priority is given to CSO's that discharge to sensitive areas.

#### F.1 RECEIVING WATERS OVERVIEW

Major receiving waters impacted from PVSC service area combined sewer overflows include the Passaic River, Hackensack River, Newark Bay, Upper New York Bay, Hudson River, Kill Van Kull, Raritan River and Raritan Bay, as well as their tributaries. The NJDEP has categorized these receiving waters into Watershed Management Areas (WMA) 1 through 20 and refers to these designations in the 303(d) list of impaired water.

#### F.1.1 CSO Receiving Waters

CSO receiving waters are water bodies that either a CSO discharges into, or receive flow from tributaries with CSOs. The receiving waters include the combined sewer service area of the PVSC Sewer District and expands from this service area to include all receiving and adjacent downstream waters that may be potentially affected by CSOs from the various combined sewer service areas of the NJ CSO Group. PVSC CSO Sewer District receiving waters include the Passaic River, Hudson River, Newark Bay, Upper New York Bay, Hackensack River, Kill Van Kull, as well as their tributaries. All of the CSO outfalls and the waterbodies into which they discharge are listed in **Table D-2**.

#### F.1.2 Summary of Impacted Drainage Basins

The receiving waters and their tributaries belong to drainage basins that are impacted by CSO discharges. Drainage basins, or watersheds, are areas that are separated by drainage divides and within a watershed, all surface water drains to a single outlet such as a river. The impacted watersheds within PVSC Sewer District are listed in **Table F-1**. The watersheds are also shown with the QAPP Part 1 and Part 2 areas from the "System Characterization and Landside Modeling Program Quality Assurance Project Plan (QAPP)," which have been previously approved by NJDEP areas in **Figure F-1**.

| Watershed Name                                          | Area<br>(sq mi) |
|---------------------------------------------------------|-----------------|
| Hudson River                                            | 5               |
| Passaic River Lower (Saddle to Pompton)                 | 46              |
| Hackensack River (below and including Hirschfeld Brook) | 19              |
| Passaic River Lower (Newark Bay to Saddle)              | 52              |
| Elizabeth River                                         | 2               |
| Newark Bay / Kill Van Kull / Upper NY Bay               | 25              |

#### Table F-1: Watersheds Affected by CSO Discharges



Figure F-1: PVSC Sewer District Watersheds



# **F.2 POLLUTANTS OF CONCERN IN THE RECEIVING WATERS**

#### F.2.1 Summary of the Identified POCs for Each Receiving Water

Three (3) POCs were determined to apply to each of PVSC Sewer District's four receiving waters. These three POCs are parameters typically associated with CSO discharges. The concentrations of these identified POCs in the receiving waters have been further investigated through the receiving water quality monitoring and modeling, subsequently described in Sections E, G, H and I of this report. The NJDEP determined POCs for each of the receiving waters relative to the PVSC CSO sewer district are listed below:

- Passaic River
  - Fecal Coliform
  - Escherichia coli (E. coli) (fresh water)
  - Enterococcus
- Newark Bay
  - Fecal Coliform
  - E. coli (fresh water tributaries)
  - Enterococcus
- Upper New York Bay
  - Fecal Coliform
  - E. coli(fresh water tributaries)
  - Enterococcus
- Hackensack River
  - Fecal Coliform
  - E. coli (fresh water)
  - Enterococcus

# **F.3** RECEIVING WATER USE DESIGNATIONS AND APPLICABLE WATER QUALITY STANDARDS

#### F.3.1 NJ Integrated Water Quality Monitoring and Assessment Report (303(d) list)

The New Jersey Integrated Water Quality Monitoring and Assessment Report (303(d) list) is a catalog of the impaired waters throughout the state of New Jersey. More information about the 303(d) list can be found in Section B.2.4

## F.3.2 Interstate Environmental Commission (IEC) Water Quality Regulations

The Interstate Environmental Commission (IEC) is an air and water pollution control agency that serves the Interstate Environmental District within the states of New York, New Jersey, and Connecticut. The Commission's goal is to protect the environment and assure compliance with and enforcement of its Water Quality Regulations. For more information about IEC Regulations, see Section B.2.5.



# F.3.3 New Jersey Administrative Code

NJAC Section 7:9B Surface Water Quality Standards lists the classifications, designated uses, and water quality criteria for the all New Jersey water bodies. For more information about the NJAC, see Section B.2.6.

# F.4 PASSAIC RIVER

# F.4.1 Watershed Drainage Basin

The Passaic River basin consists of three areas referred to as the Upper Basin (Highlands), Central Basin and the Lower Basin (Lower Valley) and drains approximately 935 square miles of Northern New Jersey and Southern New York State. The NJDEP has designated the Upper and Mid Passaic River, Whippany and Rockaway as Watershed Management Area 6 (WMA 6) and the Lower Passaic River and Saddle as Watershed Management Area 4 (WMA 4). Passaic River basin is characterized by extensive suburban development of which relies upon ground water sources for water supply. The Passaic River basin lies in portions of Morris, Somerset, Sussex and Essex Counties and includes the Upper and Middle Passaic River, Whippany River and Rockaway River Watersheds. The portion of the Passaic River Basin which overlaps the PVSC service area is mainly in the lower basin and extends from the City of Paterson to the City of Newark. See the Passaic River Watershed map shown below in **Figure F-2.** 

Frank's Creek, Second River, Third River, Pompton River, and Saddle River are tributaries of the Passaic River. Generally CSO regulator outfalls located in Paterson, Newark, Harrison, Kearny and East Newark are permitted to discharge to the Passaic River. Several CSOs regulator outfalls located in Kearny are permitted to discharge to Frank's Creek.

## F.4.2 Physical Characteristics

The Lower Passaic River begins at the Pompton River confluence and continues downstream eventually reaching the Newark Bay. The Lower Passaic River and its tributaries, including the Saddle River, has a drainage area of about 180 square miles. The Lower Passaic River Watershed lies within portions of Passaic, Essex, Hudson, Morris, and Bergen Counties.

All 129 square miles of the Lower Passaic River Watershed are primarily urban/suburban. The section of the Lower Passaic River within the urban/suburban area has poor water quality conditions due to numerous point sources, significant nonpoint source contributions, and high sediment oxygen demands, (State of New Jersey, 2014). The Lower Passaic River Watershed's water quality conditions are affected by a number of hazardous waste sites and contamination issues that have resulted from a long history of industrialization, (State of New Jersey, 2014).

The primary aquatic habitats of the lower Passaic River are intertidal mudflats and subtidal bottom (Ianuzzi, 2004). The intertidal mudflats and their associated shallow-water subtidal areas are primary habitats for estuarine organisms, providing the only available foraging habitat for fish, blue crab, and waterbirds.



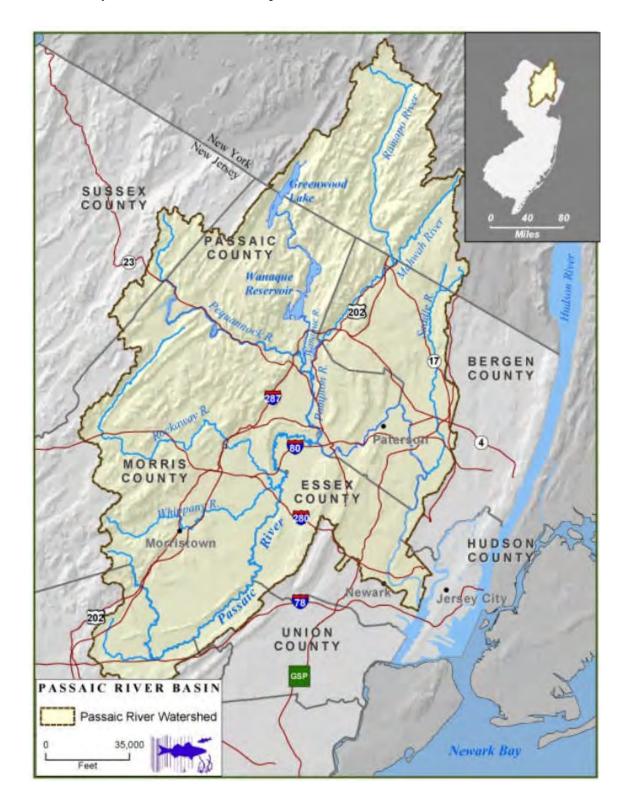



Figure F-2: Map of the Passaic River Basin Retrieved from <u>https://passaicriver.org/passaic-river-basin/</u>



# F.4.3 Hydrodynamics

The Passaic River stretches approximately 80 miles from Mendham, NJ to Newark Bay. The Passaic River Basin drains approximately 935 square miles, 85% of which are located in New Jersey and the rest in New York. The project study area includes the last nine miles of the Upper Passaic River from just upstream of Paterson, NJ to the Dundee Dam in Garfield, NJ, as well as the Lower Passaic River. The Upper Passaic River includes water withdrawals by the North Jersey District Water Commission and the Passaic Valley Water Commission. The Upper Passaic River also includes the Great Falls in Paterson, NJ. The Lower Passaic River is the 17-mile tidal stretch of the Passaic River from the Dundee Dam to its confluence with Newark Bay. Most of the freshwater originates from upstream of the Dundee Dam with an annual average discharge rate of about 1,200 cfs (TSI, 2003). There are, however, three major tributaries to the Lower Passaic River that bring additional fresh water river downstream of the Dundee Dam. These are:

- Saddle River (99 cfs)
- Third River (about 21 cfs)
- Second River (18 cfs)

Four other tributaries, McDonald Brook, Frank Creek, Lawyer's Creek, and Plum Creek have also been identified historically as contributing freshwater inflow to the Lower Passaic River. However, these tributaries are now urbanized tributaries, and now receive freshwater inflows via CSO and / or Stormwater Outfalls (SWO) inputs. The combined flow of the three major tributaries (Saddle River, Third River, and Second River) is estimated to represent less than 10% of the total flow at the mouth of the estuarine section of the combined Lower Passaic River/Hackensack River system.

CSOs, as well as SWOs, also contribute to the inflow of freshwater in the Passaic River. No WRRF outfalls are located in the Lower Passaic River. However, the Northwest Bergen County Utilities Authority discharges Ho-Ho-Kus Brook, which flows to the Saddle River.

The waters of the Lower Passaic River are also influenced by semidiurnal tides reaching a mean tidal range of about 5 ft. Density stratification is prevalent in the Lower Passaic River causing a distinct reversal of residual currents between top and bottom layers of the water column. Historical salinity data indicates that salt can travel upstream about 10 miles from the mouth of Passaic River during conditions of low river inflows. The salt front can be pushed out of the Lower Passaic River under moderately high river flows, i.e., 100 m<sup>3</sup>/sec or 3,500 cfs (Chant, personal communication). Field studies conducted by TSI in 1995-6 and Rutgers University in 2004 indicate that intra-tidal variations in surface and bottom salinities near the mouth of the Lower Passaic River can reach as high as 10 ppt (parts per thousand).

## F.4.4 Shoreline Characteristics

The Lower Passaic River (downstream of the Dundee Dam) has a mix of bulkheaded industrial and natural shorelines. Extensive parkland line the River in Bergen County. Natural vegetation also lines the freshwater sections along Dundee Lake and sections in Paterson and further



upstream. Vegetated wetland comprises approximately one acre of the lower six miles of shoreline of the Lower Passaic River.

The natural shoreline of the lower six miles of the Lower Passaic River has been industrialized and is mostly lined with buildings and parking lots. Approximately 52 percent of the lower six miles of the Passaic River has been bulkheaded; another 30 percent of the shoreline is riprap, (New Jersey, 2014). Weedy vegetation lines the shoreline in a few remaining riparian areas. In mudflats reeds grow in abundance. Trees and scrub-shrubs grow in higher elevations. Ruderal plants such as tree of heaven and goldenrod are found throughout the area (Ianuzzi, 2004).

## F.4.5 NJ Integrated Water Quality Monitoring and Assessment Report (303(d) list)

The Lower Passaic River is listed on the 303 (d) list as being impaired for the following pollutants:

- Arsenic
- Benzo(a)pyrene (PAHs)
- Cause Unknown
- Chlordane in Fish Tissue
- DDT and its metabolites in Fish Tissue
- Dieldrin
- Dioxin (including 2, 3, 7, 8-TCDD)
- Escherichia coli
- Heptachlor epoxide
- Mercury in Fish Tissue
- Oxygen, Dissolved
- PCBs in Fish Tissue
- pH
- Phosphorus (Total)
- Total Suspended Solids (TSS)

## F.4.6 Designated Uses and Water Quality Criteria from NJ Code

NJAC Section 7:9B Surface Water Quality Standards lists the Passaic River as FW2-NT in the Paterson reach, FW2-NT/SE2 in the Little Falls reach, and SE3 in the Newark reach at the Second River. The classification FW2-NT refers to a fresh water non trout water body. SE2 and SE3 both refer to saline estuarine water bodies. Classifications along with designated uses, indicator bacteria and their criteria are shown in **Table F-2** below.



| Classification | Designated Use(s) | Indicator Bacteria | Criteria (per 100 mL) |
|----------------|-------------------|--------------------|-----------------------|
| FW2            | Primary Contact   | E. coli            | 126 GM, 235 SSM       |
| SE2            | Secondary Contact | Fecal Coliform     | 770 GM                |
| SE3            | Secondary Contact | Fecal Coliform     | 1500 GM               |

#### F.4.7 Classification and Water Quality Regulations from the IEC

The IEC classifies the mouth of the Passaic River as Class B-1. For more information regarding the IEC standards for Class B-1 water bodies, see Section B.2.4.

#### F.5 NEWARK BAY

#### F.5.1 Watershed Drainage Basin

Newark Bay is a tidal bay and is located at the confluence of the Passaic and Hackensack Rivers at the northern end of the bay. Newark Bay is connected to the Kill Van Kull and Arthur Kill at the southern end adjacent to Staten Island. The Kill Van Kull is a tidal strait which connects the Newark Bay to the Raritan Bay and lies between Staten Island and the City of Bayonne. The Arthur Kill links the Newark Bay with the Lower New York Bay. Other tributaries of Newark Bay include the Elizabeth River, the Arthur Kill, and the Peripheral Ditch, Queen Ditch and Great Ditch. The Upper New York Bay is also a tidal bay and is located between New York City and Jersey City. The Hudson River flows into the northern end of the Upper Bay. Newark Bay, Upper New York Bay, Kill Van Kull and Arthur Kill are all considered part of the NJDEP Arthur Kill Watershed Management Area 7.

City of Bayonne CSO regulator outfalls are permitted by NJDEP to discharge to the Newark Bay, Kill Van Kull and the Upper New York Bay. A few CSO outfalls located in the City of Newark are permitted to overflow to the Peripheral Ditch and Queen Ditch. See **Figure F-3** below for location of the CSO Outfalls in the Newark Bay area.

## F.5.2 Physical Characteristics

The Newark Bay is approximately 6 miles long extending in the north south direction and varies in width from one-half mile to 1.2 miles. Newark bay shipping channels range in depth from 35 to 50 feet at Mean Low Low Water tide (MLLW). The bay area aside from the channel range in depth from 0 at the shoreline to approximately 11 to 15 feet at MLLW. The Kill Van Kull is a narrow straight channel that is approximately 3 miles long extending in the east west direction and 1000 feet wide. The shipping channel depth through the Kill Van Kull is approximately 50 feet at MLLW. The Arthur Kill is a 10 mile channel extending in the north south direction and runs along the west side of Staten Island. The Arthur Kill shipping channel depth ranges from 30 to 50 feet at MLLW.

#### F.5.3 Hydrodynamics

The Passaic River along with the Hackensack River and Newark Bay is one of the most complex estuarine systems in the United States. The system is connected to two tidal straits, named the Kill van Kull and the Arthur Kill. These straits connect Newark Bay and the Passaic and



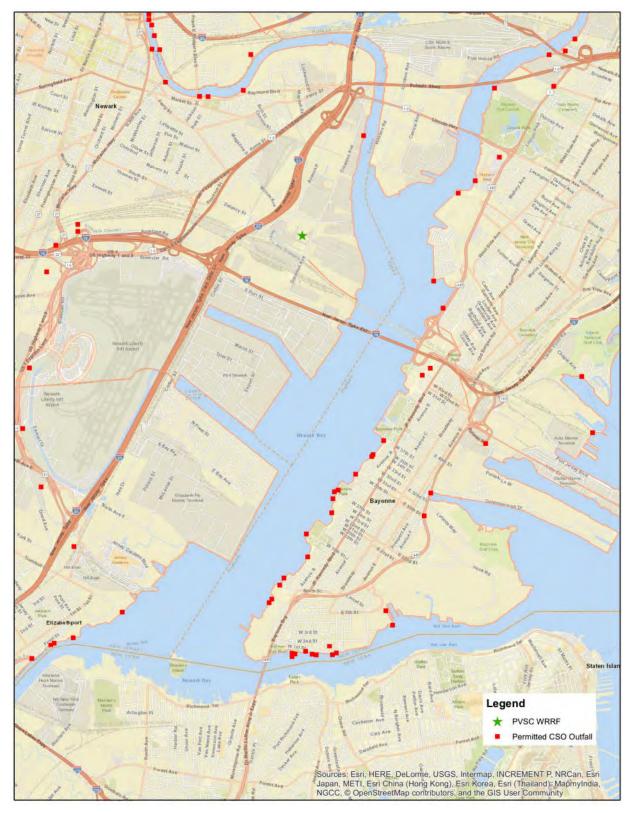



Figure F-3: The Newark Bay



Hackensack Rivers with the Upper New York Bay and Raritan Bay, through which tides, originating in the Atlantic Ocean, enter the system. The bathymetry of the Passaic-Hackensack-Newark Bay system is characterized by deep shipping channels along the center of both the Arthur Kill and the Kill van Kull, as well as the west side of Newark Bay through the center of both the Lower Passaic and Hackensack Rivers, with shallower side banks. The USACE maintains the navigability of the channels in order to support New York-New Jersey Port operations. The shipping channels, maintained by the USACE to facilitate the movement of container ships in and out of Newark Bay, added additional complexity to the dynamics of the system. The shipping channels in Newark Bay and the Kills are relatively deep (35 - 50 ft). The near-shore depths vary significantly. The shipping channels play an important role in transporting saline water from the ocean into the system.

The hydrodynamics of the Passaic-Hackensack-Newark Bay system is predominantly controlled by three forcing mechanisms, freshwater flows, tides, and winds. Two major sources of freshwater inflows, the Passaic and Hackensack Rivers, contribute to the salinity gradients in the system. By far, the largest freshwater contribution is from the Passaic River. The long-term (1983-2003) daily average flow measured at Little Falls is about 29 m<sup>3</sup>/sec (1,000 cfs) and the maximum flow during this 21-year period was approximately 500 m<sup>3</sup>/sec (18,000 cfs) in April 1984. In contrast the average flow in the Hackensack River is only  $1.6 \text{ m}^3/\text{s}$  (56 cfs) and a maximum flow of approximately 158 m<sup>3</sup>/s (5,500 cfs) was measured in September 1999 during Hurricane Floyd. The salinity dynamics in the system are mostly controlled by the freshwater flows from the Passaic and Hackensack Rivers and the saltier ocean waters that enter the system through the Kill van Kull and the Arthur Kill. During most low to moderate flow periods, the salinity front stays within upper Newark Bay and the Lower Passaic and Hackensack Rivers. Salinity is, in general, higher during the time of low freshwater flow and is also more uniform both vertically and horizontally throughout the system than during the time of high freshwater flow. Freshwater flows emanating from the Passaic River stay along the western edge of Newark Bay, creating cross channel salinity gradients (Pence, 2004). The deep shipping channels in the system act as conveyances of denser and saltier ocean water to upper Newark Bay and to the Lower Passaic and Hackensack Rivers.

Tidal influence has significant importance within the Passaic-Hackensack-Newark Bay estuarine system. A harmonic analysis of tidal elevation data measured at Bergen Point, which is at the entrance to Newark Bay, suggests that the semi-diurnal constituents (M2 and S2) dominate the system. A spectral analysis of the tidal elevations also indicated that maximum variance occurred at an interval of approximately 12.4 hours, suggesting a dominant semi-diurnal tidal signal. The resultant tidal harmonic constituents are provided in **Table F-3**. The table indicates that the study area has predominant semi-diurnal tides.



| Constituents   | Period (Hrs) | Amplitude (m) | Phase (deg) |
|----------------|--------------|---------------|-------------|
| O <sub>1</sub> | 25.82        | 0.05          | 107.1       |
| K <sub>1</sub> | 23.93        | 0.10          | 108.6       |
| M2             | 12.42        | 0.73          | 233.7       |
| S <sub>2</sub> | 12.00        | 0.14          | 263.8       |
| N <sub>2</sub> | 12.66        | 0.16          | 220.4       |

Table F-3: Characteristics of Principal Tidal Constituents in Newark Bay

Tidal currents in Newark Bay and in the Passaic and Hackensack Rivers are found to be moderate, with maximum amplitudes of 0.5 m/sec. Most of the time, the surface and bottom tidal currents are of equal magnitude and are in phase in Newark Bay. However, during high-flow periods the surface currents, directed towards the ocean (ebb currents), become much stronger than the bottom currents, indicating the presence of strong vertical shear (Pence, 2004). During high freshwater flow, classical two-layer estuarine circulation is observed during flood tides, with surface currents flowing seaward and bottom currents flowing upstream. The net flow along the side banks is downstream, with an increased magnitude under higher freshwater flow conditions.

Strong and persistent wind events in Newark Bay can have a strong effect on the circulation in the estuary, and in some extreme cases can disrupt the normal pattern of estuarine circulation. Modeling analysis (Pence, 2004, Pecchioli et al., 2006) suggests that strong winds from the west will flush water and water borne constituents from Newark Bay out through the Kill van Kull, with weaker flow in through the Arthur Kill. Model computations indicate that this flow pattern changes direction when strong winds blow from the east, i.e., flow enters the Kill van Kull from the upper portion of New York/New Jersey Harbor and then enters Newark Bay (Pecchioli et al., 2006).

#### F.5.4 Shoreline Characteristics

The Newark Bay shoreline has been industrially developed with approximately two-thirds of the shoreline consisting of riprap and bulkhead.

- Bulkhead 40%
- Mixed Intertidal 10%
- Riprap 30%
- Vegetation 20%

Most of the western shoreline of Newark Bay is bulkheaded and lies in industrial areas. In 1958, the Port Authority dredged the Elizabeth Channel and created the Elizabeth Marine Terminal on the northwest side of Newark Bay. Most of the eastern shoreline is riprap or bulkheaded and lies in residential and recreational areas. At the south end of Newark Bay, near Staten Island, is Shooters Island, which is a 43-acre bird sanctuary with riprap shoreline. The south side of



Newark Bay, on the north side of Staten Island, is wetlands. There is a small remaining plant community located in the upland and wetland area as a reflection of these disturbed bulkheaded conditions. Some of the area along the shoreline is used for fishing.

## F.5.5 NJ Integrated Water Quality Monitoring and Assessment Report (303(d) list)

The Newark Bay is listed on the 303 (d) list as being impaired for the following pollutants:

- Benzo(a)pyrene (PAHs)
- Cause Unknown
- Chlordane in Fish Tissue
- DDT and its metabolites in Fish Tissue
- Dieldrin
- Dioxin (including 2, 3, 7, 8-TCDD)
- Heptachlor epoxide
- Hexachlorobenzene
- Mercury in Fish Tissue
- PCB in Fish Tissue
- Phosphorus (Total)

## F.5.6 Designated Uses and Water Quality Criteria from NJ Administrative Code

NJAC 7:9B Surface Water Quality Standards lists the portion of the Newark Bay north of an east-west line connecting Elizabethport with Bergen Pt., Bayonne up to the mouths of the Hackensack and Passaic Rivers as SE3. SE3 refers to a saline estuarine water body. Classifications along with designated uses, indicator bacteria and their criteria are shown in **Table F-4** below.

| Table F-4: | NJAC Regarding the Newark Bay |
|------------|-------------------------------|
|------------|-------------------------------|

| Classification | Designated Use(s) | Indicator Bacteria | Criteria (per 100 mL) |
|----------------|-------------------|--------------------|-----------------------|
| SE3            | Secondary Contact | Fecal Coliform     | 1500 GM               |

## F.5.7 Designated Zone and Water Quality Regulations from the IEC

The IEC classifies the Newark Bay as Class B-2. For more information regarding the IEC standards for Class B-1 and B-2 water bodies, see Section B.2.4.

## F.6 UPPER NEW YORK BAY

#### F.6.1 Watershed Drainage Basin

The Upper New York Bay is a tidal bay and is located between New York City and Jersey City at the confluence of the Hudson and East Rivers.



CSOs regulators located in Guttenberg and northern part of Bayonne are permitted by NJDEP to discharge to the Hudson River and the Upper New York Bay area. See **Figure F-4** below for location of the CSO Outfalls in the Upper New York Bay Area.

## F.6.2 Physical Characteristics

The Upper New York Bay is approximately 7 miles long extending in the north south direction and varies in width from 1 mile to 5 miles. The Upper New York Bay is connected to the Lower New York Bay by the Narrows. The Upper New York Bay has a maximum shipping channel depth of 50 feet. The Upper New York Bay includes Ellis Island, Liberty Island and Governors Island.

## F.6.3 Hydrodynamics

Upper New York Bay is bordered by the New York City boroughs of Manhattan, Brooklyn and Staten Island and the New Jersey municipalities of Jersey City and Bayonne. The hydrodynamics within the bay are complicated due to its interconnectedness with several waterbodies. It receives freshwater from the Hudson River to the north, and is connected with the East River, Kill Van Kull, and the New York Bight (Atlantic Ocean). The channel of the Hudson as it passes through the bay is called the Anchorage Channel and is approximately 50 feet deep in the midpoint of the bay. The drainage area for the Hudson River is approximately 14,000 square miles, with 8,090 square miles in the non-tidally affected area above the Troy Dam near Green Island, NY. USGS gage 01358000 at Green Island, NY measures an average flow of approximately 14,500 cfs, with a maximum estimated flow of 215,000 cfs occurring on March 19, 1936. Additional freshwater is added from the drainage area below the dam.

The combination of freshwater flow from the Hudson River, saltwater flow from the Atlantic Ocean, and tidal exchange can create a two layer flow with freshwater at the surface leaving the bay to the south, and saltwater flow at the bottom entering the bay through the deep channel. The salt front (100 milligrams per liter of chloride) ranges from below Hastings-on-Hudson to New Hamburg during most years, but can move as far north as Poughkeepsie during periods of drought.

## F.6.4 Shoreline Characteristics

The Upper New York Bay shoreline has been bulkheaded for industrial development including shipping and ferry terminals, residential use and park and recreational use. Several islands are located in the Upper New York Bay including Governors Island, Liberty Island, Ellis Island, and Robbins Reef. A small portion of the shoreline in is riprap and natural shoreline.





Figure F-4: The Upper New York Bay



# F.6.5 NJ Integrated Water Quality Monitoring and Assessment Report (303(d) list)

The Upper New York Bay is listed on the 303 (d) list as being impaired for the following pollutants:

- Benzo(a)pyrene (PAHs)
- Cause Unknown
- Chlordane in Fish Tissue
- DDT and its metabolites in Fish Tissue
- Dieldrin
- Dioxin (including 2, 3, 7, 8-TCDD)
- Heptachlor epoxide
- Hexachlorobenzene
- Mercury in Fish Tissue
- PCB in Fish Tissue
- Phosphorus (Total)

# F.6.6 Designated Uses and Water Quality Criteria from NJ Administrative Code

The Upper New York Bay is included in the NJAC as the Hudson River and saline portions of New Jersey tributaries from the confluence with the Harlem River, New York to a north-south line connecting Constable Hook (Bayonne) to St. George (Staten Island, New York) as SE2. SE2 refers to a saline estuarine water body. Classifications along with designated uses, indicator bacteria and their criteria are shown in **Table F-5** below.

#### Table F-5: NJAC Regarding the Newark Bay

| Classification | Designated Use(s) | Indicator Bacteria | Criteria (per 100 mL) |
|----------------|-------------------|--------------------|-----------------------|
| SE2            | Secondary Contact | Fecal Coliform     | 770 GM                |

## F.6.7 Designated Zone and Water Quality Regulations from the IEC

The IEC classifies the Upper New York Bay (Hudson River) as Class B-1 and the Newark Bay as Class B-2. For more information regarding the IEC standards for Class B-1 and B-2 water bodies, see Section B.2.4.

# F.7 HACKENSACK RIVER

## F.7.1 Watershed Drainage Basin

The Hackensack River is considered part of the NJDEP Watershed Management Area 5 (WMA 5) which has a drainage area of over 165 square miles. There are three watersheds in WMA 5 including the Hackensack River, Hudson River and the Pascack Brook. The majority of the lower Hackensack River is tidal marsh known as the Hackensack Meadowlands. Tributaries of the Hackensack River include Cromakill Creek, Bellman's Creek, and Penhorn Creek.



CSOs regulators located in North Bergen Township are permitted by NJDEP to discharge to the Cromakill Creek and Bellman's Creek. See **Figure F-5** below for location of the CSO Outfalls in the Hackensack River Area.

### F.7.2 Physical Characteristics

The Hackensack River watershed contains tidal marshes known as the Hackensack Meadowlands District. Seven hundred plant and animal species live in the Meadowlands, including several rare and endangered species. The Hackensack River watershed is the most populated out of all the CSO receiving watersheds outlined in this report. Although half of the land is still not developed, more than one third has been developed into dense residential areas. The remaining developed land is used for commercial/industrial activity.

Point sources of pollution such as hazardous waste and Superfund sites are known to contaminate the surface waters in the Hackensack River watershed. Due to contamination, it is prohibited to consume or sell striped bass and blue crabs.

Nonpoint sources of pollution mainly affect water quality. Examples of nonpoint sources in the area include extensive urban/suburban development and landfills. Runoff from construction sites, impervious surfaces, landfill leachate and CSOs impact the Hackensack River along. The Hackensack River has experienced flooding, habitat destruction and fish community degradation, along with reduction of dissolved oxygen, excessive nutrients and accelerated eutrophication. These characteristics are attributed to the physical characteristics of the Hackensack River watershed and pollution from nonpoint sources.

#### F.7.3 Hydrodynamics

The Hackensack River begins in Rockland County, NY and has a length of approximately 50 miles and a drainage area of approximately 197 square miles. The Oradell Reservoir, completed in 1923, essentially divides the Hackensack into upper and lower regions. United Water currently diverts flow from the Oradell Reservoir for water supply to 750,000 residents of Bergen and Hudson Counties. The diversion of flow essentially cuts off the flow to the Hackensack River during dry-weather, which has altered the natural conditions of the river. The area of interest for this project begins at the Oradell Reservoir Dam and flows approximately 22 miles to the confluence of Newark Bay. The average flow in the Hackensack River is approximately 1.6 m<sup>3</sup>/sec (56 cfs) and a maximum flow of approximately 158 m<sup>3</sup>/sec (5,500 cfs) was measured in September 1999 during Hurricane Floyd. At Little Ferry the river is joined by Overpeck Creek. There is some indication, based on an analysis of salinity, that an additional 2.8 to 4.2 m<sup>3</sup>/sec (100 to 150 cfs) additional freshwater flow joins the Hackensack River via groundwater along this length of the river. The Bergen County Municipal Utilities Authority's Little Ferry Water Pollution Control Facility adds approximately 4.2 m<sup>3</sup>/s (250 MGD) of flow to the river during normal operations and contributes up to 13.1 m<sup>3</sup>/s (250 MGD) during wet-weather.

In the Hackensack River, salt can penetrate about 15 miles from the river mouth due to relatively low freshwater inflows over the Oradell Dam. The lower section of the Hackensack River consists of vast area of tidal wetlands, known as the Meadowlands. USEPA's National Wetland Inventory identifies about 1,500 acres of the wetland area that are submerged under average tidal





Figure F-5: The Hackensack River

condition. Hydrodynamics in the Passaic River system are complicated by the presence of these large intertidal marshes on the Hackensack River. This is due to the fact that these marshes can provide significant water storage over a tidal cycle and during and after storm events, thereby altering the movement of water up the Hackensack River and to a lesser degree, the Passaic River.

# F.7.4 Shoreline Characteristics

The Hackensack River is bordered by tidal wetlands, parking lots, and industrial and residential buildings. Historical wetland loss due to industrialization, land development has transformed the Hackensack Meadowlands District into a brackish tidal estuary. The Hackensack River experiences tidal fluctuations and seasonal wet weather events that flood the adjacent wetlands and tributaries.

# F.7.5 NJ Integrated Water Quality Monitoring and Assessment Report (303(d) list)

The Hackensack River is listed on the 303 (d) list as being impaired for the following pollutants:

- Arsenic
- Benzo(a)pyrene (PAHs)
- Chlordane in Fish Tissue
- DDT and its metabolites in Fish Tissue
- Dieldrin
- Dioxin (including 2, 3, 7, 8-TCDD)
- Enterococcus
- Heptachlor epoxide
- Mercury in Fish Tissue
- Oxygen, Dissolved
- PCB in Fish Tissue
- pH
- Phosphorus (Total)
- Turbidity

# F.7.6 Designated Uses and Water Quality Criteria from NJ Administrative Code

NJAC Section 7:9B Surface Water Quality Standards lists the Hackensack River as SE1 in the Overpeck Creek reach, SE2 in the Little Ferry reach, and SE3 in the Kearny Point reach. The classification SE1, SE2 and SE3 all refer to saline estuarine water bodies. Classifications along with designated uses, indicator bacteria and their criteria are shown in **Table F-6** below.



| -              |                                  | 8 8                |                       |
|----------------|----------------------------------|--------------------|-----------------------|
| Classification | Designated Use(s)                | Indicator Bacteria | Criteria (per 100 mL) |
| SE1*           | Shellfishing; Primary<br>Contact | Enterococci        | 35 GM, 104 SSM        |
| SE2            | Secondary Contact                | Fecal Coliform     | 770 GM                |
| SE3            | Secondary Contact                | Fecal Coliform     | 1500 GM               |

#### Table F-6: NJAC Regarding the Passaic River

\* Shellfishing area must also comply with the National Shellfish Sanitation Program standards for total and/or fecal coliform.

#### F.7.7 Designated Zone and Water Quality Regulations from the IEC

The IEC classifies the mouth of the Hackensack River as Class B-1. For more information regarding the IEC standards for Class B-1 water bodies, see Section B.2.4.

## F.8 IDENTIFICATION OF SENSITIVE AREAS

#### F.8.1 Regulatory Requirements

#### Requirements of the USEPA's CSO Control Policy and Sensitive Areas Definition

The USEPA's CSO Control Policy (Federal Register 59 [April 19, 1994]: 18688-18698) "expects a permittee's long-term CSO control plan to give the highest priority to controlling overflows to sensitive areas" (Section II.C.3).

The CSO Control Policy states the six (6) criteria for defining an area as a "Sensitive Area" include:

- 1. Designated Outstanding National Resource Waters
- 2. National Marine Sanctuaries
- 3. Waters with threatened or endangered species and their habitat
- 4. Waters with primary contact recreation
- 5. Public drinking water intakes or their designated protected areas
- 6. Shellfish beds

The CSO Control Policy states that if Sensitive Areas are present and impacted, the LTCP should include provisions to:

- Prohibit new or significantly increased overflows
- Eliminate or relocate overflows wherever physically possible and economically achievable
- Treat overflows where necessary
- Where elimination or treatment is not achievable, reassess impacts each permit cycle

#### NJDES Permit Requirements

Sensitive Areas should be considered prior to the evaluation of CSO control alternatives. This allows a CSO community to identify and estimate costs for controls that could eliminate or relocate CSOs from Sensitive Areas where pollutant loadings pose a high environmental or public health risk and where control efforts should be focused. The cost of these controls can



then be considered, along with the community's financial capability, to evaluate cost-effective controls for all of the receiving waters.

The NJPDES permits indicate that the permittee's LTCP shall give the highest priority to controlling overflows to sensitive areas. The NJPDES Permit further states that "Sensitive areas include designated Outstanding National Resource Waters, National Marine Sanctuaries, waters with threatened or endangered species and their habitat, waters used for primary contact recreation (including but not limited to bathing beaches), public drinking water intakes or their designated protection areas, and shellfish beds."

The NJPDES Permits indicate that if Sensitive Areas are present and impacted, the following requirements will apply:

- Prohibit new or significantly increased CSOs.
- Eliminate or relocate CSOs that discharge to sensitive areas wherever physically possible and economically achievable, except where elimination or relocation would provide less environmental protection than additional treatment.
- Where elimination or relocation is not physically possible and economically achievable, or would provide less environmental protection than additional treatment, the permittee shall provide the level of treatment for remaining CSOs deemed necessary to meet WQS for full protection of existing and designated uses.

#### F.8.2 Summary of Sensitive Areas

A comprehensive review of online databases, direct observations and correspondence with regulatory agencies and local environmental organizations was conducted to identify potential Sensitive Areas within the combined sewer system portion of the collection system and in the associated receiving waters.

Outstanding National Resource Waters (ONRW) are maintained and protected by Tier 3 of the USEPA's Anti-degradation Policy. Only waters of "exceptional ecological significance" qualify as ONRWs, as determined by States and Tribes. No Outstanding National Resource Waters were located within the project boundaries.

The Office of National Marine Sanctuaries (ONMS) is the trustee of all national marine sanctuaries which currently recognizes fourteen (14) national marine sanctuaries, none of which are located within PVSC's Study Area.

The resources from the US Fish and Wildlife Service (USFWS), National Oceanic and Atmospheric Administration (NOAA), New Jersey Heritage Program (NJHP), and New Jersey DEP Division of Fish and Wildlife (NJDFW) were utilized to identify several Endangered or Threatened species which potentially could live in the project area. All species listed by United States Fish and Wildlife Service are included in NJDEP's lists. NOAA maps show potential areas that may have endangered or threatened species during parts of the year. However, both NJHP and NJDEP's correspondence indicate there are no critical habitats for these species found in the waters of the Study Area. Since CSOs impact receiving water bodies, Endangered or Threatened species that have been identified but do not require the receiving water bodies to live,



propagate, and eat in an area cannot be considered to be in their critical habitat. It is unclear if the identified areas are critical for the species' conservation when other areas are providing similar if not additional needs. Atlantic and Shortnose sturgeon may share their critical habitat in CSO discharge areas, but poor water quality is not inhibiting Atlantic sturgeon recovery, and Shortnose sturgeon have surpassed the recovery criteria in the adult population for the past few decades. The current water quality and habitat protections are viewed as adequate to maintain a healthy sturgeon population. The impact of human enteric pathogens on sturgeon should not have any negative effects on sturgeon at any life stage of the fish both now and in the future, and only commercial bycatch and prior environmental degradation is viewed as a stressor threatening sturgeon recovery.

There are thirteen locations where endangered or threatened species have been identified near permitted CSOs, but no certainty of a critical habitat existing at these locations. Primary contact was not observed or expected in the Passaic River throughout Paterson and is therefore not considered a Sensitive Area. Beaches on the Southeastern boundary of the City of Perth Amboy are not currently designated by the city for recreational bathing use, and signs are installed at this location in order to advise the public against swimming or entering the water. While monitoring this area is a priority, it is not considered a Sensitive Area.

There are no Sensitive Areas as a result of active drinking water intakes within the study area.

There are no commercial shellfish harvesters that operate within the service area. For details of the Sensitive Area Study see the Identification of Sensitive Areas Report dated June 2018 submitted to the NJDEP on behalf of the participating permittees by the PVSC.



## SECTION G - COLLECTION OF WATER QUALITY DATA

#### G.1 BACKGROUND

The NJDEP, PVSC and the leadership of the CSO permittees have agreed that a cooperative or regional approach to the development of a single CSO LTCP is desirable. PVSC has agreed to develop a sewer system characterization work plan on their behalf from its QAPPs for its hydraulically connected CSO Permittees. Several coordination meetings have been held with representatives of the CSO permittees tributary to PVSC's conveyance and treatment facilities as well as other participating CSO permittees. PVSC has agreed to lead the Combined Sewer System Characterization and Landside Modeling Tasks, as well as the Baseline Compliance Monitoring Program, on behalf of the participating permittees.

In accordance with consultation with NJDEP, multiple Sewer System Characterization Work plans QAPPs were developed to cover different aspects of the LTCP work activities for the eight combined sewer municipalities. The QAPPs for the Baseline Compliance Monitoring Program (BCMP) and Receiving Water Quality Modeling were submitted separately from the Sewer System Characterization Work Plan QAPP. The BCMP was developed to serve all of the North Jersey CSO permittees. This System Characterization Report has been developed to include PVSC and seven of the CS municipalities per agreement with each municipality. Jersey City MUA will submit their own System Characterization Report.

The Sewer System Characterization Work Plan was developed to quantify and qualify wastewater and pathogen concentration variations at key CSO and stormwater drainage basins. The Sewer System Sampling Program is outlined in Section G.3 and results are provided in Section G.4 below.

The Baseline Compliance Monitoring Program (BCMP) is modeled in part on the program performed by the New Jersey Harbor Dischargers Group. NJHDG is a similarly allied collaborative undertaking that includes nine (9) sewerage agencies representing eleven (11) wastewater treatment plants in northeastern New Jersey that discharge into the New Jersey portion of the NY/NJ Harbor Estuary. The purpose of NJHDG's long-term water quality monitoring program is to develop ambient water quality data for the Hackensack River, Passaic River, Rahway River, Elizabeth River, Raritan River, Raritan Bay, Newark Bay, and the New Jersey portions of the Hudson River, Upper New York Harbor, and the Arthur Kill, allowing long-term evaluation of water quality in these areas by providing baseline and annual information on water quality in these waterbodies as it relates to current water quality standards. This evaluation identifies changes in water quality over time under varying seasonal conditions, providing a basis for documenting pollution sources and water quality improvements resulting from the implementation of pollution control programs. The Receiving Water Quality Monitoring Program focuses on the CSO receiving waters and is outlined in Section G.6 and a summary of the results are provided in Section G.7 below. The complete Water Quality BCMP results and analysis are provided under a separate report, Baseline Compliance Monitoring Program Report.



# G.2 REGULATORY REQUIREMENTS

## G.2.1 NJPDES Permit Requirements

PVSC holds NJPDES Permit No. NJ0021016. For more information regarding NJPDES Permit Regulations, see Section B.2.1.

# G.2.2 USEPA's CSO Control Policy and Guidance Documents

USEPA's CSO Control Policy (Policy) provides guidance to municipal permittees with CSOs, to the state agencies and to state and interstate water quality standards authorities. The Policy establishes a framework for the coordination, planning, selection and implementation of CSO controls required for permittee compliance with the Clean Water Act. For more information regarding the USEPA's CSO Control Policy, see Section B.2.2.

Requirements for the Monitoring and Modeling Plan are established in the USEPA's "CSO Guidance for Monitoring and Modeling". For more information on other USEPA CSO Guidelines, see Section B.2.3.

# G.2.3 Interstate Environmental Commission Requirements

The Interstate Environmental Commission (IEC) is an air and water pollution control agency that serves the Interstate Environmental District within the states of New York, New Jersey, and Connecticut. The Commission's goal is to protect the environment and assure compliance with and enforcement of its Water Quality Regulations. For more information on IEC, see Section B.2.4.

# G.3 OVERVIEW OF SEWER SYSTEM QUALITY MONITORING PROGRAM

# G.3.1 Historic CSO Discharge Monitoring

The following historical report provided background information on the combined sewer systems tributary to each regulator as well as the analysis of historical overflow volumes and pollutants contained in the CSO discharges.

*CSO Monitoring Report* (December 1998): This effort was intended to quantify and qualify dry weather and wet weather wastewater flow and pollutant concentration variations at key CSO drainage basins so that this information can be used to calibrate and verify hydrologic and hydraulic models of the combined sewer systems for the combined communities within the PVSC service area tributary to PVSC's Interceptor Sewer and Newark's Southside Interceptor.

# G.3.2 Sewer System Quality Monitoring Objectives

The purpose of the monitoring program was to quantify and qualify dry weather and wet weather wastewater flow and pathogen concentration variations at key CSO and stormwater drainage basins to calibrate and verify hydrologic and hydraulic models (InfoWorks) of the CSSs within the PVSC service region. This data was used to update the mathematical tool (sewer system model) that will be used to assess storage and maximum hydraulic conveyance capacity in the PVSC interceptor system, pathogen concentrations and loading distributions during storm events and among CSO discharge points, calculate pathogen loads from CSOs and stormwater to the



receiving water, and for the development and evaluation of long term control alternatives and/or modifications to the water quality standards (WQS) during wet weather events.

## G.3.3 Sewer System Quality Sampling Locations

The original Quality Assurance Project Plan (QAPP) targeted 18 CSO and 8 stormwater locations, distributed throughout the PVSC region by municipality and land use. See **Figure G-1** for an overview of the sampling locations. The goal of the sampling protocol was to obtain three wet-weather events of sufficient depth, intensity, and duration for valid model calibration at each targeted location. This was the case for all eight stormwater locations; however, only one of the 18 CSO locations was successfully sampled three times, and four of the targeted CSO locations were not sampled at all due to access or other logistical issues. The use of this data is described in Section G.4.

CSO locations were sampled prior to overflow, then at the following intervals: 0.5 hour, 1 hour, 2 hours, 4 hours, and 8 hours. During the execution of the sampling, the last of these samples was often truncated because the event stopped, so crews routinely collected the last sample any time after 6 hours from start of the event or overflow. Stormwater locations were sampled four times per event, generally on an hourly basis but adjustments were made as events progressed to capture as much of a precipitation event as possible.

# G.3.4 Analytical Parameters

Water quality sampling at each location included grab samples and analysis for fecal coliform and enterococcus. Grab samples for analysis of E. coli were also collected at monitoring sites where the outfall discharges to a fresh water receiving waterbody. Laboratory Methods utilized are shown in **Table G-1**.

| Parameter         | Laboratory Method                                                  | Preservation         | Holding<br>Time | Reporting<br>Limit        |
|-------------------|--------------------------------------------------------------------|----------------------|-----------------|---------------------------|
| Fecal<br>Coliform | EPA Micro Manual p. 124 (1978),<br>Single Step Membrane Filtration | Cool <u>&lt;</u> 4°C | 6 hrs           | 1, 2, 4, 10<br>CFU/100 mL |
| Enterococcus      | EPA 1600 (Dec 2009), Membrane Filtration                           | Cool <u>&lt;</u> 4°C | 6 hrs           | 1, 2, 4, 10<br>PE/100 mL  |
| E. coli           | EPA 1603 (Dec 2009), Membrane Filtration                           | Cool <u>&lt;</u> 4°C | 6 hrs           | 1, 2, 4, 10<br>CFU/100 mL |

CFU: colony forming units; PE: presumptive enterococci.

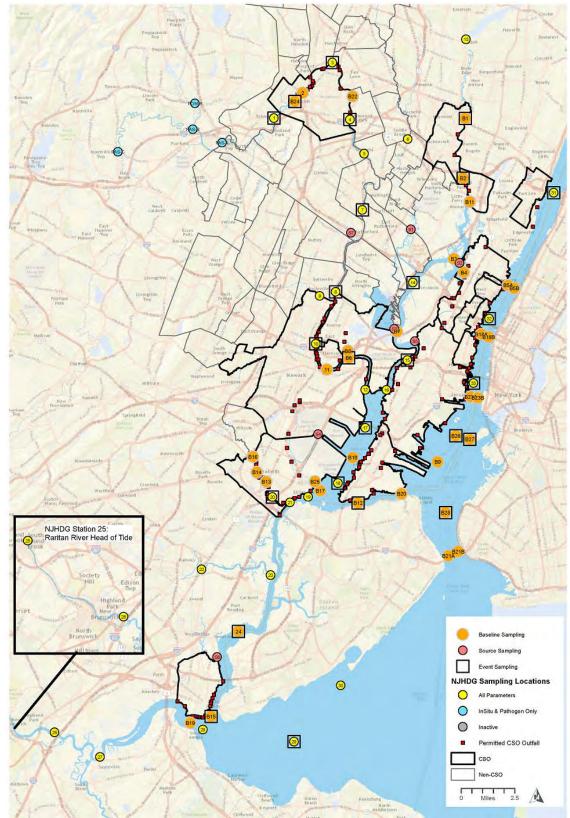



Figure G-1: Overview of Sampling Station Locations



## G.3.5 Sampling Schedule and Dates

Water quality sampling was performed. A summary of the CSO sampling dates with corresponding locations and sample identification numbers are shown in **Table G-2** and **Table G-3** below.

| Date       | Locations | CSO Sample Identification                      |  |
|------------|-----------|------------------------------------------------|--|
| 8/21/2016  | 1         | PAT-06A                                        |  |
| 11/29/2016 | 5         | HAR-06A, HAR-07A, KEA-07A, NWK-25A,<br>NWK-45A |  |
| 4/4/2017   | 4         | HAR-06A, HAR-07A, KEA-07A, NWK-91A             |  |
| 4/6/2017   | 4         | NWK-14A, NWK-45A, PAT-06A, PAT-27A             |  |
| 6/19/2017  | 4         | BAY-08A, BAY-10A, PAT-25A, PAT-27A             |  |
| 7/23/2017  | 2         | BAY-08A, BAY-10A                               |  |
| 10/24/2017 | 4         | NWK-14A, NWK-25A, NWK-45A, NWK-91A             |  |
| Total      | 13        | Unique CSO Locations                           |  |
| Total      | 27        | CSO Location-Events                            |  |

#### Table G-2: CSO Sampling Dates

#### **Table G-3: Stormwater Sampling Dates**

| Date       | Locations | Stormwater Sample Identification      |  |  |
|------------|-----------|---------------------------------------|--|--|
| 7/29/2016  | 2         | OAK-LR4, PAT-LR1                      |  |  |
| 9/19/2016  | 2         | NWK-CI2, PAT-LR1                      |  |  |
| 9/30/2016  | 2         | NWK-CI2, OAK-LR4                      |  |  |
| 10/21/2016 | 1         | NWK-HR1                               |  |  |
| 11/15/2016 | 4         | NWK-CI2, NWK-HR1, OAK-LR4,<br>PAT-LR1 |  |  |
| 12/6/2016  | 1         | NWK-HR1                               |  |  |
| 1/17/2017  | 2         | NWK-HR2, NWK-LR2                      |  |  |
| 5/5/2017   | 4         | HAW-LR3, NWK-HR2, NWK-LR2,<br>PAT-Cl1 |  |  |
| 5/22/2017  | 2         | NWK-HR2, NWK-LR2                      |  |  |
| 5/25/2017  | 2         | HAW-LR3, PAT-CI1                      |  |  |
| 7/7/2017   | 2         | HAW-LR3, PAT-CI1                      |  |  |
| Total      | 8         | Unique Stormwater Locations           |  |  |
| Total      | 24        | Stormwater Location-Events            |  |  |

#### G.3.6 System Characterization and Landside Modeling QAPP Goals

The project goals and objectives for the System Characterization and Modeling Program presented herein included:

- Supplement and update, as appropriate, the site specific dry and wet weather data to be used to recalibrate and verify the InfoWorks collections system model of those collections systems tributary to the PVSC WRRF.
- Define the CSSs' hydraulic response to rainfall.



- Supplement the existing dry weather water quality and quantity data to be used in the representation of each CSO drainage basin.
- Determine the CSO flows and pathogen concentrations/loadings being discharged to the receiving streams as a result of varied rainfall events.
- Supplement the stormwater quality data for various land use applications.

### G.4 SEWER SYSTEM QUALITY RESULTS

Graphs of data collected by HDR during April 2016 through March 2017 are presented in APPENDIX A. Stormwater data were collected in areas that were meant to represent lowdensity residential, high-density residential and industrial/commercial land-use areas. An analysis of the data indicated that the measured stormwater concentrations had more variability within land-use types than between land-use types making it difficult to make differentiations between the land-use areas. Figure G-2 presents the data by land-use type. Therefore, the stormwater data were combined to represent stormwater in general. Table G-4 presents the maximum likelihood estimation (MLE) of the stormwater pathogen data. An MLE can be used estimate a mean of a log-normally distributed dataset. The MLE fecal coliform concentration is similar to the low-level fecal coliform concentration assigned to stormwater in New York City's (NYC) LTCPs, which was 50,000 cfu/100mL. The MLE fecal coliform concentration based on the sampling program is also similar to the mean of all of the fecal coliform data in the International Stormwater BMP Database, which is 62,557 cfu/100mL. As E. coli bacteria are a subset of fecal coliform bacteria, the E. coli MLE concentration of 38,253 cfu/100mL is a reasonable value as it is lower than the MLE concentration of the fecal coliform concentrations collected as part of the sampling program. The enterococci concentrations are high when compared to the fecal coliform concentrations. In the NYC LTCP program, it was typical to measure fecal coliform concentrations higher than the enterococci concentrations, and the highlevel area enterococci concentration used for stormwater was 35,000 cfu/100mL. However, a review of the enterococci data collected as part of this sampling program does not indicate that any outlier measurements were the cause of a higher MLE for enterococci, and in general enterococci concentrations were measured at higher levels than fecal coliform in the stormwater. Without evidence that the data are flawed, the concentrations shown in Table G-4 will form the starting point for estimating the stormwater concentrations in the modeling analysis. These stormwater concentrations are also part of the CSO concentration calculations as part of the approach for calculating loads.

|     | Fecal Coliform | Enterococci | E. coli     |
|-----|----------------|-------------|-------------|
|     | (cfu/100mL)    | (cfu/100mL) | (cfu/100mL) |
| MLE | 41,103         | 110,016     | 38,253      |

The CSO data will be used to verify the CSO concentrations calculated by using a combination of sewer system model output and estimated sanitary and stormwater pathogen concentrations. This "Mass Balance Approach" will be used to estimate pathogen loading from CSOs in the receiving water model.



As described in Section G.3.3, fewer CSO overflow events were sampled than planned. However, these data were not collected to develop the pathogen loads for the CSOs, or to calibrate the model. There are too many CSOs for a sampling program to effectively characterize the pathogen loading from each outfall. The CSO sampling was conducted to help verify that the Mass Balance Approach is an adequate way to estimate the CSO concentrations at each outfall. The number of CSO events that were captured were enough to indicate that the pathogen loading approach is reasonable despite not capturing as many events at as many CSOs as planned. Additional discussion will be provided in a modeling report as described in the Pathogen Water Quality Modeling QAPP.

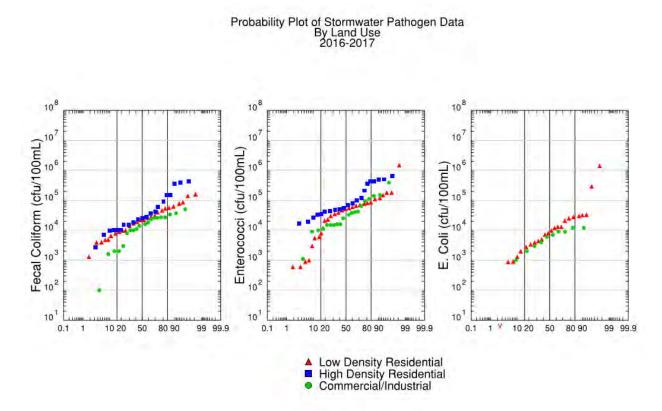



Figure G-2: Probability Distributions of Stormwater Pathogens by Land-use Type

#### G.4.1 Plant Influent Sampling and Results

Fecal coliform, enterococci, and E. coli concentrations were measured in PVSC plant influent for the period of July 11, 2016 through February 8, 2018. These concentrations will be used to assign the concentrations for the sanitary fraction of the CSO flow as part of the Mass Balance Approach that will be used to calculate CSO pathogen concentrations for use in the receiving water quality model. **Table G-5** provides a summary of the concentrations collected. Fecal coliform had the highest concentrations, followed by E. coli, and then enterococci. Fecal coliform and E. coli showed a seasonal pattern with higher concentrations in the warmer months and lower concentrations in the cooler months. A seasonal trend was not evident in the enterococci concentration data. The sanitary data used as part of the Mass Balance Approach for



assigning CSO concentrations will be assessed to determine if annual or seasonal concentrations do a better job of reproducing the CSO concentrations measured as part of the field sampling program.

| Statistic      | Fecal Coliform<br>(cfu/100mL) | Enterococci<br>(cfu/100mL) | E. coli<br>(cfu/100mL) |
|----------------|-------------------------------|----------------------------|------------------------|
| Average        | 3,722,595                     | 682,661                    | 2,616,057              |
| MLE            | 3,804,207                     | 700,260                    | 2,716,496              |
| Geometric Mean | 2,771,484                     | 597,075                    | 2,127,581              |
| Minimum        | 160,000                       | 4,000*                     | 100,000                |
| Maximum        | 47,000,000                    | 6,200,000                  | 7,200,00               |

#### Table G-5: Pathogen Concentration Summary

\* A value of < 2 cfu/100mL was recorded but not considered valid

# G.5 OVERVIEW OF HISTORICAL RECEIVING WATER QUALITY MONITORING

#### G.5.1 Historic Water Quality Sampling

The New Jersey Harbor Dischargers Group (NJHDG) is an allied collaborative undertaking that includes nine (9) sewerage agencies representing 11 wastewater treatment plants in northeastern New Jersey that discharge into the New Jersey portion of the NY/NJ Harbor Estuary. PVSC, BCUA, JMEUC, MCUA, NBMUA, NHSA are overlapping members of NJHDG and the NJ CSO Group. These agencies collaborate, jointly fund, and perform various water quality studies in the region.

In 2003, the NJHDG initiated a Long-Term Ambient Water Quality Monitoring Program for the NJ portion of the NY/NJ Harbor Estuary. PVSC had previously initiated a long-term ambient water quality monitoring program of the Passaic River, Hackensack River, and Newark Bay in 2000, and has taken the lead for the NJHDG monitoring program. The NJHDG monitoring program is modeled after the successful New York City Department of Environmental Protection (NYCDEP) Harbor Survey. The main objective of the NJHDG program is to develop a comprehensive database on the existing water quality of the NY/NJ Harbor by routinely and extensively monitoring the waters of the Hackensack River, Passaic River, Rahway River, Elizabeth River, Raritan River, Raritan Bay, Newark Bay, and the New Jersey portions of the Hudson River, Upper New York Harbor, and the Arthur Kill. The data collected allows long-term evaluation of water quality in these areas by providing baseline and annual information on water quality in these waterbodies as it relates to current water quality standards. This evaluation identifies changes in water quality over time under varying seasonal conditions, providing a basis for documenting pollution sources and water quality improvements resulting from the implementation of pollution control programs.

Thirty-four locations throughout the region are monitored for 18 conventional chemical water quality parameters including: temperature, pH, dissolved oxygen (DO), salinity, Secchi depth, total suspended solids (TSS), 5-day carbonaceous biochemical oxygen demand (CBOD-5), total



Kjeldahl nitrogen (TKN), nitrate-nitrogen (NO<sub>3</sub>-N), nitrite-nitrogen (NO<sub>2</sub>-N), ammonia-nitrogen (NH<sub>3</sub>-N), total phosphorus (TP), orthophosphate (OP), dissolved organic carbon (DOC), chlorophyll-a (Chlor-a), fecal coliform bacteria and Enterococcus bacteria. **Figure G-1** presents the monitoring station locations. Monitoring is performed at each station biweekly during May and June, weekly from July through September and monthly from October through April. All resources for the monitoring program, including sampling personnel and laboratory analyses, are provided by the NJHDG member agencies.

The NJHDG program has effectively served to eliminate the data gap for NJ waters of the NY/NJ Harbor Estuary system by monitoring waterbodies that are not currently monitored by the New Jersey Department of Environmental Protection (NJDEP) Surface Water Quality

Monitoring Network, United States Geological Survey (USGS) Surface Water Quality Gages, or the United States Environmental Protection Agency (USEPA) New York Bight Water Quality Monitoring Program.

This program formed the basis of the LTCP sampling program as described in Section G.4.

# G.6 OVERVIEW OF THE RECEIVING WATER QUALITY MONITORING PROGRAM

# G.6.1 Receiving Water Quality Monitoring Objectives and Baseline Compliance Monitoring

The Baseline Compliance Monitoring Program has the following objectives:

- Fulfilling the CSO Permit requirement under paragraph D.3.c and under paragraph G.9 for ambient monitoring.
- Generating sufficient data for establishing existing ambient water quality conditions for pathogens to foster appropriate regulatory decisions based on current water quality measurements.
- Generating sufficient relevant data under wet and dry conditions to be used to update, calibrate and validate a pathogen water quality model of the receiving water bodies.
- Supporting the goals of the other components of the LTCP (System Characterization and Receiving Water Quality Modeling).

The Baseline Compliance Monitoring Program includes three parallel data collection efforts to achieve these objectives:

- 1. Baseline Sampling, which may supplement data from the ongoing NJHDG annual program;
- 2. Source Sampling, which will target the major influent streams within the study area to establish non-CSO loadings, and will coincide with the NJHDG and Baseline Sampling; and
- 3. Event Sampling, which is timed to coincide with rainfall to capture three discrete wetweather events over the course of the year on each segment of the NY-NJ Harbor complex impacted by CSOs.



## G.6.2 Receiving Water Quality Sampling Locations

Sampling stations were located to supplement the existing NJHDG monitoring program to provide additional spatial coverage and ensure that each permittee had at least one monitoring station in its local waterbody. A total of 35 additional baseline monitoring stations were added to the existing 34 NJHDG stations. Twenty-five of those 69 stations were chosen for event sampling. An additional seven source sampling stations were added to identify other sources of bacteria to the system. All of the monitoring stations are presented in **Figure G-1**. Shallow stations were sampled at mid-depth and deeper stations were sampled at near surface and mid-depth.

#### G.6.3 Analytical Parameters

The focus of the LTCP is pathogens. Accordingly, the sampling program was created to measure pathogens and the factors that can affect their concentrations.

# Field Testing

The following parameters were directly measured in the field:

- Dissolved Oxygen (DO)
- Temperature
- pH
- Salinity
- Secchi depth (where applicable)
- Turbidity

Methods, reporting limits, method detection limits and holding times are presented in Table G-6.

| Parameter                                    | Method                     | Reporting<br>Limit (RL) | Method<br>Detection<br>Limit (MDL) | Holding Time        |
|----------------------------------------------|----------------------------|-------------------------|------------------------------------|---------------------|
| Temperature (°Celsius)                       | SM 2550 B                  | 0.1 °C                  | 0 °C                               | Analyze Immediately |
| Salinity<br>(parts per thousand)             | SM 2520 B                  | 0.1 ppt                 | 0 ppt                              | Analyze Immediately |
| Dissolved Oxygen<br>(milligrams per liter)   | SM 4500-O C<br>SM 4500-O G | 0.1 mg/L                | 0 mg/L                             | Analyze Immediately |
| рН                                           | SM 4500-H B<br>EPA 150.2   | 0.1                     | 0                                  | Analyze Immediately |
| Light Penetration (feet)                     | Secchi Depth               | 0.1 ft                  | 0.1 ft                             | Analyze Immediately |
| Turbidity (Nephelometric<br>Turbidity Units) | SM 2130 B                  | 0 NTU                   | 0 NTU                              | Analyze Immediately |

## Table G-6: Field Methods



# Laboratory Testing

The following parameters were analyzed at Eurofins QC, Inc.:

- Fecal Coliform (all locations)
- Enterococcus (all locations)
- E. coli (freshwater locations only; Elizabeth River & Upper Passaic River)

Methods, reporting limits, preservation and holding times are presented in Table G-7.

| Parameter         | Laboratory Method                                                  | Preservation         | Holding<br>Time | Reporting<br>Limit        |
|-------------------|--------------------------------------------------------------------|----------------------|-----------------|---------------------------|
| Fecal<br>Coliform | EPA Micro Manual p. 124 (1978),<br>Single Step Membrane Filtration | Cool <u>&lt;</u> 4°C | 6 hrs           | 1, 2, 4, 10<br>CFU/100 mL |
| Enterococcus      | EPA 1600 (Dec 2009), Membrane<br>Filtration                        | Cool <u>&lt;</u> 4°C | 6 hrs           | 1, 2, 4, 10<br>PE/100 mL  |
| E. coli           | EPA 1603 (Dec 2009), Membrane<br>Filtration                        | Cool <u>&lt;</u> 4°C | 6 hrs           | 1, 2, 4, 10<br>CFU/100 mL |

| Table  | <b>G-7:</b>  | Lab | Methods      |
|--------|--------------|-----|--------------|
| 1 4010 | <b>U</b> / • | 1   | 1 i como dis |

CFU: colony forming units; PE: presumptive enterococci.

## G.6.4 Sampling Schedule and Dates

The Baseline Sampling is modeled after the approved routine sampling program of the NJHDG. However, the proposed Baseline Sampling targeted additional locations to supplement NJHDG data and enhance overall spatial coverage. The Baseline sampling occurred over a period of 12-months from April 2016 through March 2017. The sampling frequency matched the NJHDG program, varying with time of year as follows:

- Spring (May-Jun): Biweekly (4 dates)
- Summer (Jul-Sep): Weekly (12 dates)
- Winter (Oct-Apr): Monthly (7 dates)

The Baseline Sampling and the NJHDG program provided a seasonally-based characterization of existing water quality. All sampling dates for the Baseline Sampling were predetermined at the initiation of the program. For the purposes of the Baseline Compliance Monitoring Program, a sampling date was considered to be wet weather if 0.2 inches of rain or more fell within 24 hours prior to sample collection. Source Sampling coincided with Baseline Sampling.

# G.6.5 QAPP Overview

The Baseline Compliance Monitoring Program QAPP was finalized on February 19, 2016. The QAPP included four standard sections: Project Management, Data Generation and Acquisition, Assessment and Oversight, and Data Validation and Usability as outlined in Guidance for Quality Assurance Project Plans, EPA QA/G-5 (EPA 2002). The plan outlined the necessary steps to achieve a successful monitoring program.

Table G-8 presents the quality targets outlined in the QAPP.



| Data Quality Indicator | Performance Criterion                    | Assessment Activity                                  |
|------------------------|------------------------------------------|------------------------------------------------------|
| Completeness           | Valid data from 90% of collected samples | Percentage of valid measurements                     |
| Precision              | RPD <sup>1</sup> < 30% for duplicates    | 1 field duplicate/crew-day                           |
| Representativeness     | Blanks <u>&lt;</u> MDL <sup>2</sup>      | 1 field blank/crew-day<br>1 equipment blank/crew-day |

<sup>1</sup>Relative Percent Difference on a log basis; non-representative when (a) both the original and duplicate results are not detected or are less than 5x the reporting limit or (b) either result is estimated, rejected, or suspected of contamination. <sup>2</sup>Method Detection Limit, calculated where applicable.

The sampling program achieved its targeted performance criteria. The data collected in this program should provide an adequate characterization of the variable water quality of receiving waters in the project area.

### G.7 RECEIVING WATER QUALITY RESULTS

The field work completed consisted of Baseline Sampling, Source Sampling and Event Sampling as outlined in Section G.4. Field work for these three elements was completed on April 28, 2017; the last of the laboratory results were provided June 10, 2017. A total of 23 baseline and source sampling events were completed. The goal of the event sampling was to capture three significant wet weather events (precipitation >0.5 inches in 24 hours) at each targeted station, which was completed across four sampling events (one set of samples was collected across two precipitation events). All samples collected were analyzed for fecal coliform and enterococcus; freshwater samples were also analyzed for E. coli.

The data collected under the Baseline Compliance Monitoring Program appears to be sufficient for the intended goal of calibrating the water quality model to be used for PVSC and NJCSO communities' LTCPs.

The BCMP was not designed to provide an adequate data volume for assessing attainment of water quality standards, which would have required five samples per month at each sampling location to compute monthly geometric means. However, a review of the data collected can indicate the likelihood of attainment in a particular area:

- The lower regions of the Passaic and Hackensack Rivers appear likely to violate water quality criteria, but attainment appears to improve closer to Newark Bay.
- The larger waterbodies (Newark Bay, Hudson River, Arthur Kill, Kill Van Kull) appear to meet existing water quality criteria. Newark Bay and the Kills are primarily SE3 waterbodies, and Raritan Bay is subject to more stringent shellfishing water quality standards.



- Several smaller riverine waterbodies appear unlikely to meet attainment. This includes the Rahway River, Saddle River, Second River, and Elizabeth River. The Raritan River may also have attainment issues.
- Many rivers without CSOs have high bacteria loads. Data collected at source sampling locations indicate non-attainment of waters entering the Passaic and Hackensack Rivers, contributing pollutant loads into the study area from areas that do not have CSOs.

The companion document Baseline Compliance Monitoring Program Data Summary provides a more comprehensive summary of the water quality results.



# SECTION H - TYPICAL HYDROLOGIC PERIOD

### H.1 INTRODUCTION

### H.1.1 Typical Year for CSO LTCP Development

Precipitation generates urban storm water and combined sewer overflows (CSOs). These will contribute bacteria and pollutants to the New York-New Jersey Harbor and its surrounding major tributaries. The effect of these contributors on the receiving streams mainly depends on the magnitude and duration of rainfall events and on the prevailing ambient river conditions controlling dilution and transport of the pollutants. This variability and complexity poses a significant challenge for assessing the performance of wet weather and CSO control alternatives.

In accordance with the Combined Sewer Overflows - CSO Control Policy from the U.S. Environmental Protection Agency, Office of Water, Washington, DC, EPA 830-B-94-001, April 1994 and the NJDEP Master General Permit issued January 1995, the CSO control alternatives should be assessed on a "system-wide, annual average basis". This is accomplished by continuous simulation using a typical hydrologic period for the combined sewer system (CSS) and receiving water quality modeling applications. The CSO Policy supports continuous simulation modeling, i.e., using long-term precipitation records rather than records for individual storms. Long-term continuous precipitation records enable simulations to be based on a sequence of storms so that the additive effect of storms occurring close together can be examined. They also enable storms with a range of characteristics to be included.

The typical year is intended to contain the closest to average year for the years with available data. Average year conditions are defined as the arithmetic average of the predictions for the selected period.

### H.1.2 Annual Precipitation Trend 1948-2015

Average U.S. precipitation has increased since 1900, but there are regional differences, with some areas having larger increases, and others, decreases. Local climate change should be considered when selecting appropriate data records for the typical period analysis.

Daily precipitation data from Newark Liberty International Airport were obtained from the National Oceanic and Atmospheric Administration (NOAA) from 1948 through 2015 to evaluate precipitation trend.

**Figure H-1** shows annual precipitation depth from 1948 to 2015. An average straight trend line using sum of least squares is also shown in the figure for characterizing long-term precipitation pattern. During 1948 through 2015, annual precipitation depth ranges from 26.9 to 69.91 inches, with the driest year in 1963 and the wettest year in 2011. The figure splits to show the trend line change from 1948 to 1970 contrasted to 1970 to 2015. From 1948 to 1970 shows a declining pattern with an approximate change of 0.337 inch per year. From 1970 to 2015 shows an inclining pattern with an approximate change of 0.032 inch per year. The latter trend line is more relevant to present day. Therefore it is determined that the typical period for the LTCP to



be selected based on statistical analysis of precipitation records in recent 46 years (i.e., 1970-2015).

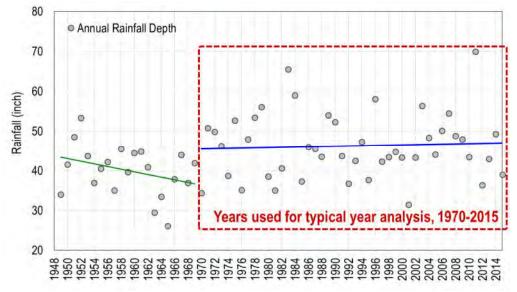



Figure H-1: Historical Annual Precipitation at Newark Liberty International Airport

# H.1.3 Methodology of Typical Year Selection

The typical hydrologic year is selected to provide representative and unbiased approximations of expected conditions in terms of both averages and historical variability. Representativeness is assessed using objective criteria for each of the ambient factors. As indicated in the previous section, the selection of the typical hydrologic period is based on the historical records in the past 46 years from 1970 through 2015. The following datasets are used for the analysis of the typical hydrologic period:

- Hourly precipitation data for the National Climate Data Center gauge at Newark Liberty International Airport for 1970 - 2015 is used for analyzing individual rainfall event and event characteristics.
- Daily precipitation data for the National Climate Data Center gauge at Newark Liberty International Airport for 1970 - 2015 is used for analyzing annual and seasonal precipitation amounts.

Criteria used in this typical year analysis were developed based on requirements listed in the presumption approach and the demonstration approach, and potential operational and maintenance considerations for CSO control facilities (EPA's CSO Control Policy, 1994).

Key criteria parameters used in the evaluation are listed in **Table H-1**. Each parameter is given a weighting factor to describe the individual importance on the averageness of the analyzed time period.



| Criteria Parameter                                                     | Weighing<br>Factor | Description / Importance                                                        |
|------------------------------------------------------------------------|--------------------|---------------------------------------------------------------------------------|
| Annual rainfall depth                                                  | 30%                | Impacting annual overflow volume and storage volume                             |
| # of events with rainfall depth $\geq$ 0.2 in                          | 10%                | Rainfall depth to trigger overflow in existing system                           |
| # of events with rainfall depth $\geq$ 0.1 in                          | 5%                 | Rainfall depth to trigger surface runoff                                        |
| 5 <sup>th</sup> largest storm volume                                   | 5%                 | Determining max storage capacity or WRRF capacity                               |
| Rainfall volume for 85% captured                                       | 5%                 | Determining max storage capacity or WRRF capacity                               |
| # of back-to-back rainfall events                                      | 10%                | Determining antecedent conditions and potential storage facility operation      |
| Maximum peak intensities of the 5 <sup>th</sup> largest storm and less | 5%                 | Determining the sizing of conveyance pipes, diversions, regulators, pumps, etc. |
| # of storms with return frequency $\geq$ 1-<br>year                    | 5%                 | Extremely large storms to be avoided                                            |
| Average Rainfall Duration                                              | 15%                | Determining storage capacity                                                    |
| Average Rainfall Intensity                                             | 10%                | Determining storage capacity including pipes, regulators, diversions, etc.      |

### Table H-1: Typical Hydrologic Year Ranking Parameters

# H.2 TYPICAL YEAR SELECTION

### H.2.1 Annual Rainfall Statistics

The 46-year hourly precipitation data (1970 - 2015) from the Newark Liberty International Airport was analyzed to evaluate all individual rainfall events in the period. An inter-event time (IET) of 6 hours (i.e. minimum dry time of six hours between rainfall events) was used to differentiate between individual rainfall events. All rainfall events for the data period were analyzed for duration, inter-event time, total rainfall amount, as well as maximum rainfall intensities.

A total of 4,812 rainfall events were counted for the period of 1970 - 2015 (3022 events with a total depth  $\ge 0.1$  inch). Events with a total precipitation depth equal to or greater than 0.1 inch are used for further analysis. **Table H-2** summarizes rainfall events on an annual basis for annual rainfall depth, number of events above 0.2 inch, number of events above 0.1 inch, the 5th largest storm volume, rainfall volume for 85% captured, number of back-to-back rainfall events, maximum peak intensity of 5th largest and smaller events, number of events with return frequency of one-year and above, average rainfall duration, and average rainfall intensity. The average of the 46 years is shown at the end of the table for each criteria parameter.



|      | rabe II-2. Annual Ramian Statistics 1970-2015 |                                                |                                                |                                 |                                                   |                                    |                                                                |                                                     |                                         |                                             |  |
|------|-----------------------------------------------|------------------------------------------------|------------------------------------------------|---------------------------------|---------------------------------------------------|------------------------------------|----------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------|---------------------------------------------|--|
| Year | Annual<br>Rainfall<br>(in)                    | # of<br>Events ><br>=0.2"<br>Rainfall<br>Depth | # of<br>Events ><br>=0.1"<br>Rainfall<br>Depth | 5th<br>Largest<br>Storm<br>(in) | Rainfall<br>Volume<br>for 85%<br>Captured<br>(in) | # of<br>back-to-<br>back<br>events | Maximum<br>Peak<br>Intensity<br>of 5th<br>Largest &<br>Smaller | # of<br>Storms<br>with<br>Return<br>Freq > 1-<br>yr | Average<br>Rainfall<br>Duration<br>(hr) | Average<br>Rainfall<br>Intensity<br>(in/hr) |  |
| 1970 | 34.39                                         | 50                                             | 64                                             | 1.07                            | 0.77                                              | 17                                 | 0.98                                                           | 0                                                   | 9.36                                    | 0.080                                       |  |
| 1971 | 50.77                                         | 49                                             | 64                                             | 1.67                            | 3.02                                              | 14                                 | 0.99                                                           | 3                                                   | 10.33                                   | 0.092                                       |  |
| 1972 | 49.86                                         | 57                                             | 82                                             | 1.78                            | 1.35                                              | 14                                 | 0.62                                                           | 4                                                   | 11.00                                   | 0.060                                       |  |
| 1973 | 46.29                                         | 50                                             | 61                                             | 2.15                            | 1.27                                              | 7                                  | 0.72                                                           | 2                                                   | 11.77                                   | 0.082                                       |  |
| 1974 | 38.76                                         | 54                                             | 74                                             | 1.2                             | 0.93                                              | 11                                 | 0.88                                                           | 1                                                   | 9.16                                    | 0.076                                       |  |
| 1975 | 52.65                                         | 59                                             | 78                                             | 1.72                            | 1.57                                              | 18                                 | 1.01                                                           | 4                                                   | 11.19                                   | 0.078                                       |  |
| 1976 | 35.19                                         | 50                                             | 66                                             | 1.3                             | 0.94                                              | 11                                 | 0.91                                                           | 2                                                   | 9.14                                    | 0.082                                       |  |
| 1977 | 47.97                                         | 49                                             | 73                                             | 2.04                            | 2.05                                              | 9                                  | 1.00                                                           | 1                                                   | 10.47                                   | 0.071                                       |  |
| 1978 | 53.41                                         | 51                                             | 72                                             | 2.42                            | 1.54                                              | 13                                 | 1.28                                                           | 5                                                   | 11.85                                   | 0.073                                       |  |
| 1979 | 56.1                                          | 59                                             | 76                                             | 2.17                            | 1.55                                              | 17                                 | 0.87                                                           | 3                                                   | 11.45                                   | 0.075                                       |  |
| 1980 | 38.51                                         | 37                                             | 48                                             | 1.85                            | 1.32                                              | 4                                  | 0.71                                                           | 2                                                   | 11.15                                   | 0.079                                       |  |
| 1981 | 35.04                                         | 47                                             | 63                                             | 1.45                            | 0.94                                              | 12                                 | 0.92                                                           | 1                                                   | 9.03                                    | 0.068                                       |  |
| 1982 | 40.58                                         | 44                                             | 55                                             | 1.54                            | 1.15                                              | 8                                  | 0.75                                                           | 1                                                   | 11.20                                   | 0.068                                       |  |
| 1983 | 65.5                                          | 58                                             | 65                                             | 2.49                            | 1.39                                              | 9                                  | 0.93                                                           | 4                                                   | 13.22                                   | 0.090                                       |  |
| 1984 | 59.01                                         | 51                                             | 71                                             | 1.98                            | 1.63                                              | 9                                  | 0.94                                                           | 7                                                   | 10.90                                   | 0.087                                       |  |
| 1985 | 37.29                                         | 40                                             | 58                                             | 1.42                            | 1.21                                              | 12                                 | 0.84                                                           | 2                                                   | 11.29                                   | 0.069                                       |  |
| 1986 | 45.95                                         | 52                                             | 67                                             | 1.77                            | 1.43                                              | 13                                 | 0.76                                                           | 2                                                   | 11.03                                   | 0.072                                       |  |
| 1987 | 45.53                                         | 54                                             | 64                                             | 1.61                            | 1.07                                              | 12                                 | 0.97                                                           | 0                                                   | 11.39                                   | 0.079                                       |  |
| 1988 | 43.51                                         | 55                                             | 59                                             | 1.66                            | 1.12                                              | 10                                 | 0.80                                                           | 2                                                   | 10.81                                   | 0.078                                       |  |
| 1989 | 53.99                                         | 61                                             | 79                                             | 1.95                            | 1.23                                              | 15                                 | 0.69                                                           | 2                                                   | 10.14                                   | 0.093                                       |  |
| 1990 | 52.3                                          | 62                                             | 79                                             | 1.88                            | 1.08                                              | 11                                 | 1.04                                                           | 2                                                   | 9.78                                    | 0.096                                       |  |
| 1991 | 43.76                                         | 54                                             | 64                                             | 1.95                            | 1.33                                              | 5                                  | 0.88                                                           | 2                                                   | 11.03                                   | 0.084                                       |  |
| 1992 | 36.74                                         | 46                                             | 65                                             | 1.31                            | 1.22                                              | 9                                  | 0.80                                                           | 2                                                   | 11.09                                   | 0.058                                       |  |
| 1993 | 42.51                                         | 50                                             | 60                                             | 1.65                            | 1.07                                              | 10                                 | 0.80                                                           | 1                                                   | 12.60                                   | 0.074                                       |  |
| 1994 | 47.32                                         | 57                                             | 72                                             | 1.76                            | 1.16                                              | 12                                 | 0.96                                                           | 0                                                   | 11.18                                   | 0.077                                       |  |
| 1995 | 37.67                                         | 43                                             | 58                                             | 1.35                            | 1.05                                              | 7                                  | 0.60                                                           | 1                                                   | 10.05                                   | 0.073                                       |  |
| 1996 | 58.07                                         | 63                                             | 76                                             | 2                               | 1.30                                              | 10                                 | 1.09                                                           | 3                                                   | 10.09                                   | 0.086                                       |  |
| 1997 | 42.35                                         | 45                                             | 60                                             | 1.35                            | 1.21                                              | 7                                  | 0.71                                                           | 2                                                   | 10.75                                   | 0.066                                       |  |
| 1998 | 43.47                                         | 43                                             | 56                                             | 1.89                            | 1.42                                              | 10                                 | 1.23                                                           | 2                                                   | 11.59                                   | 0.089                                       |  |
| 1999 | 44.75                                         | 52                                             | 60                                             | 1.43                            | 1.82                                              | 11                                 | 0.65                                                           | 3                                                   | 11.92                                   | 0.076                                       |  |
| 2000 | 43.35                                         | 49                                             | 63                                             | 1.43                            | 1.02                                              | 10                                 | 0.50                                                           | 2                                                   | 10.24                                   | 0.081                                       |  |
| 2001 | 31.44                                         | 40                                             | 55                                             | 1.41                            | 0.95                                              | 8                                  | 0.69                                                           | 0                                                   | 10.40                                   | 0.058                                       |  |
| 2002 | 43.37                                         | 49                                             | 54                                             | 1.67                            | 1.14                                              | 5                                  | 1.03                                                           | 1                                                   | 12.24                                   | 0.107                                       |  |
| 2003 | 56.33                                         | 64                                             | 76                                             | 1.89                            | 1.16                                              | 18                                 | 0.86                                                           | 2                                                   | 11.41                                   | 0.081                                       |  |

 Table H-2: Annual Rainfall Statistics 1970-2015



| Year                       | Annual<br>Rainfall<br>(in) | # of<br>Events ><br>=0.2"<br>Rainfall<br>Depth | # of<br>Events ><br>=0.1"<br>Rainfall<br>Depth | 5th<br>Largest<br>Storm<br>(in) | Rainfall<br>Volume<br>for 85%<br>Captured<br>(in) | # of<br>back-to-<br>back<br>events | Maximum<br>Peak<br>Intensity<br>of 5th<br>Largest &<br>Smaller | # of<br>Storms<br>with<br>Return<br>Freq > 1-<br>yr | Average<br>Rainfall<br>Duration<br>(hr) | Average<br>Rainfall<br>Intensity<br>(in/hr) |
|----------------------------|----------------------------|------------------------------------------------|------------------------------------------------|---------------------------------|---------------------------------------------------|------------------------------------|----------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------|---------------------------------------------|
| 2004                       | 48.37                      | 54                                             | 73                                             | 1.63                            | 1.18                                              | 12                                 | 0.99                                                           | 3                                                   | 10.33                                   | 0.084                                       |
| 2005                       | 44.14                      | 44                                             | 57                                             | 1.4                             | 2.16                                              | 3                                  | 0.80                                                           | 2                                                   | 12.75                                   | 0.061                                       |
| 2006                       | 50.16                      | 52                                             | 65                                             | 2.01                            | 1.44                                              | 12                                 | 1.17                                                           | 3                                                   | 11.26                                   | 0.078                                       |
| 2007                       | 54.49                      | 52                                             | 67                                             | 2.36                            | 1.88                                              | 4                                  | 1.46                                                           | 6                                                   | 9.72                                    | 0.095                                       |
| 2008                       | 48.83                      | 49                                             | 69                                             | 1.84                            | 1.34                                              | 11                                 | 0.77                                                           | 3                                                   | 10.04                                   | 0.094                                       |
| 2009                       | 47.93                      | 54                                             | 74                                             | 1.87                            | 1.13                                              | 13                                 | 0.80                                                           | 1                                                   | 10.91                                   | 0.074                                       |
| 2010                       | 43.47                      | 44                                             | 52                                             | 1.6                             | 1.51                                              | 10                                 | 0.93                                                           | 2                                                   | 12.08                                   | 0.103                                       |
| 2011                       | 69.91                      | 59                                             | 76                                             | 2.4                             | 2.76                                              | 17                                 | 0.89                                                           | 4                                                   | 10.22                                   | 0.106                                       |
| 2012                       | 36.35                      | 51                                             | 68                                             | 1.47                            | 0.94                                              | 11                                 | 1.01                                                           | 1                                                   | 8.81                                    | 0.095                                       |
| 2013                       | 42.94                      | 49                                             | 61                                             | 1.43                            | 1.06                                              | 9                                  | 1.10                                                           | 1                                                   | 10.41                                   | 0.083                                       |
| 2014                       | 49.33                      | 60                                             | 69                                             | 1.56                            | 1.24                                              | 10                                 | 1.26                                                           | 2                                                   | 10.99                                   | 0.083                                       |
| 2015                       | 38.98                      | 42                                             | 54                                             | 1.46                            | 0.95                                              | 5                                  | 0.99                                                           | 1                                                   | 11.43                                   | 0.089                                       |
| Average<br>(1970-<br>2015) | 46.3                       | 51.2                                           | 65.7                                           | 1.72                            | 1.35                                              | 10.54                              | 0.90                                                           | 2.2                                                 | 10.9                                    | 0.081                                       |

## H.2.2 Ranking Analysis

With the weighting factors listed in **Table H-1**, a deviation score was developed for each individual period. The steps to perform the ranking analysis is discussed in detail in the *Typical Hydrologic Year Report* prepared for Passaic Valley Sewerage Commission (PVSC). The 1-year periods were then ranked based on the deviation score. The lower deviation score (**Figure H-2** Y-axis), the higher the rank for the hydrologic period (i.e., the closer it is to the average condition). **Figure H-2** shows the ranking results of the 46 hydrologic years,

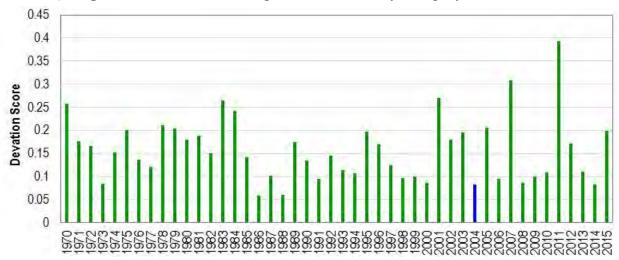



Figure H-2: Ranking Score of 1970-2015



## H.2.3 Top Ranked Hydrologic Years

**Table H-3** summarizes top 20 ranked years based on the ranking analysis. It was decided that a more recent period be used for the PVSC CSO LTCP study to reflect recent climate conditions. It was also determined that the typical year should be selected from years with an annual precipitation depth greater than the average value (highlighted with green background in **Table H-3**) to be more conservative. Therefore, the following five years are the top years to be considered for typical year selection:

- 1:2004
- 2: 2014
- **3**: 1973
- 4: 2008
- 5: 2006

| Preliminary<br>Rank | Year   | Deviation<br>Score | Annual<br>Rainfall<br>(in) | # of<br>Events<br>>=0.2"<br>Rainfall<br>Depth | # of<br>Events<br>>=0.1"<br>Rainfall<br>Depth | 5th<br>Largest<br>Storm<br>(in) | Rainfall<br>Volume for<br>85%<br>Captured<br>(in) | # of<br>back-to-<br>back<br>events | Maximum<br>Peak<br>Intensity<br>of 5th<br>Largest &<br>Smaller | # of<br>Storms<br>with<br>Return<br>Freq ><br>1-yr | Average<br>Rainfall<br>Duration<br>(hr) | Average<br>Rainfall<br>Intensity<br>(in/hr) |
|---------------------|--------|--------------------|----------------------------|-----------------------------------------------|-----------------------------------------------|---------------------------------|---------------------------------------------------|------------------------------------|----------------------------------------------------------------|----------------------------------------------------|-----------------------------------------|---------------------------------------------|
|                     | Weigl  | hing Factor        | 30%                        | 10%                                           | 5%                                            | 5%                              | 5%                                                | 10%                                | 5%                                                             | 5%                                                 | 15%                                     | 10%                                         |
| Av                  | verage | 1970-2015          | 46.3                       | 51.2                                          | 66                                            | 1.7                             | 1.35                                              | 10.54                              | 0.90                                                           | 2.2                                                | 10.85                                   | 0.081                                       |
|                     |        |                    |                            |                                               |                                               |                                 |                                                   |                                    |                                                                |                                                    |                                         |                                             |
| 1                   | 1986   | 0.058              | 46.0                       | 52                                            | 67                                            | 1.77                            | 1.43                                              | 13                                 | 0.76                                                           | 2                                                  | 11.03                                   | 0.072                                       |
| 2                   | 1988   | 0.060              | 43.5                       | 55                                            | 59                                            | 1.66                            | 1.12                                              | 10                                 | 0.80                                                           | 2                                                  | 10.81                                   | 0.078                                       |
| 3                   | 2004   | 0.082              | 48.4                       | 54                                            | 73                                            | 1.63                            | 1.18                                              | 12                                 | 0.99                                                           | 3                                                  | 10.33                                   | 0.084                                       |
| 4                   | 2014   | 0.082              | 49.3                       | 60                                            | 69                                            | 1.56                            | 1.24                                              | 10                                 | 1.26                                                           | 2                                                  | 10.99                                   | 0.083                                       |
| 5                   | 1973   | 0.084              | 46.3                       | 50                                            | 61                                            | 2.15                            | 1.27                                              | 7                                  | 0.72                                                           | 2                                                  | 11.77                                   | 0.082                                       |
| 6                   | 2008   | 0.086              | 48.8                       | 49                                            | 69                                            | 1.84                            | 1.34                                              | 11                                 | 0.77                                                           | 3                                                  | 10.04                                   | 0.094                                       |
| 7                   | 2000   | 0.086              | 43.4                       | 49                                            | 63                                            | 1.43                            | 1.02                                              | 10                                 | 0.50                                                           | 2                                                  | 10.24                                   | 0.081                                       |
| 8                   | 2006   | 0.095              | 50.2                       | 52                                            | 65                                            | 2.01                            | 1.44                                              | 12                                 | 1.17                                                           | 3                                                  | 11.26                                   | 0.078                                       |
| 9                   | 1991   | 0.096              | 43.8                       | 54                                            | 64                                            | 1.95                            | 1.33                                              | 5                                  | 0.88                                                           | 2                                                  | 11.03                                   | 0.084                                       |
| 10                  | 1998   | 0.097              | 43.5                       | 43                                            | 56                                            | 1.89                            | 1.42                                              | 10                                 | 1.23                                                           | 2                                                  | 11.59                                   | 0.089                                       |
| 11                  | 1999   | 0.099              | 44.8                       | 52                                            | 60                                            | 1.43                            | 1.82                                              | 11                                 | 0.65                                                           | 3                                                  | 11.92                                   | 0.076                                       |
| 12                  | 2009   | 0.099              | 47.9                       | 54                                            | 74                                            | 1.87                            | 1.13                                              | 13                                 | 0.80                                                           | 1                                                  | 10.91                                   | 0.074                                       |
| 13                  | 1987   | 0.101              | 45.5                       | 54                                            | 64                                            | 1.61                            | 1.07                                              | 12                                 | 0.97                                                           | 0                                                  | 11.39                                   | 0.079                                       |
| 14                  | 1994   | 0.107              | 47.3                       | 57                                            | 72                                            | 1.76                            | 1.16                                              | 12                                 | 0.96                                                           | 0                                                  | 11.18                                   | 0.077                                       |
| 15                  | 2010   | 0.108              | 43.5                       | 44                                            | 52                                            | 1.60                            | 1.51                                              | 10                                 | 0.93                                                           | 2                                                  | 12.08                                   | 0.103                                       |
| 16                  | 2013   | 0.110              | 42.9                       | 49                                            | 61                                            | 1.43                            | 1.06                                              | 9                                  | 1.10                                                           | 1                                                  | 10.41                                   | 0.083                                       |
| 17                  | 1993   | 0.114              | 42.5                       | 50                                            | 60                                            | 1.65                            | 1.07                                              | 10                                 | 0.80                                                           | 1                                                  | 12.60                                   | 0.074                                       |
| 18                  | 1977   | 0.120              | 48.0                       | 49                                            | 73                                            | 2.04                            | 2.05                                              | 9                                  | 1.00                                                           | 1                                                  | 10.47                                   | 0.071                                       |
| 19                  | 1997   | 0.125              | 42.4                       | 45                                            | 60                                            | 1.35                            | 1.21                                              | 7                                  | 0.71                                                           | 2                                                  | 10.75                                   | 0.066                                       |
| 20                  | 1990   | 0.135              | 52.3                       | 62                                            | 79                                            | 1.88                            | 1.08                                              | 11                                 | 1.04                                                           | 2                                                  | 9.78                                    | 0.096                                       |

### Table H-3: Top 20 Ranked Years

Rainfall return frequency was analyzed to understand the distribution of the large rainfall events with return frequencies above one year. **Table H-4** summarizes quantity of large rainfall events with return frequencies for the above-mentioned top ranked hydrologic periods.

| Final | Year |      | Events wit<br>cy Above | h Return |       |       |
|-------|------|------|------------------------|----------|-------|-------|
| Rank  |      | 1-yr | 2-yr                   | 5-yr     | 10-yr | 50-yr |
| 1     | 2004 | 2    | 1                      |          |       |       |
| 2     | 2014 | 1    |                        |          | 1     | 0     |
| 3     | 1973 | 2    |                        |          |       |       |
| 4     | 2008 | 1    | 1                      | 1        |       |       |
| 5     | 2006 | 1    |                        | 1        |       | 1     |

Table H-4: Top 5 Ranked Years – Quantity of Rainfall Events

### H.2.4 Selected Hydrologic Period

The year 2004 will be used as the typical hydrologic year for the CSO LTCP. The year 2004 was ranked first in the criteria described above and contains a wide range of storms and antecedent conditions. Year 2004 also has close to an average CSO volume and event number based on the hydrologic and hydraulic model results.

A summary of the parameters and the percent difference is shown below in Table H-5.

Table H-5: Summary of the Recommended Typical Year - 2004

| Parameters                                                    | 2004                                          |
|---------------------------------------------------------------|-----------------------------------------------|
| Annual Precipitation*                                         | 48.37 in (4.5% greater than average 46.27)    |
| Number of Events >=0.2" Rainfall Depth                        | 54 (5% greater than average 51.2)             |
| Number of Events >=0.1" Rainfall Depth                        | 73 (11% greater than average 66)              |
| 5 <sup>th</sup> Largest Storm Volume                          | 1.63 in (5% less than average 1.70)           |
| Rainfall Volume for 85% Capture                               | 1.18 in (12% less than average 1.35)          |
| Back-to-Back Storm Events                                     | 12 (14% greater than average 10.5)            |
| Max Peak Intensity of 5 <sup>th</sup> Largest Storm & Smaller | 0.99 in/hr (9.5% greater than average 0.90)   |
| Extreme Storm                                                 | 1 Year Storm (2)<br>2 Year Storm (1)          |
| Average Rainfall Duration                                     | 10.3 hr (4.8% less than average 10.8)         |
| Average Rainfall Intensity                                    | 0.084 in/hr (3.8% greater than average 0.081) |

Note:

\* Includes snowfall



Characteristics of the top 20 rainfall events (by rainfall depth) in the hydrologic year are shown in **Table H-6**.

| 2004 | Event Start     | Duration<br>(hr) | Precipitation<br>Depth (in) | Max<br>Rainfall<br>Intensity<br>(in/hr) | Average<br>Rainfall<br>Intensity<br>(in/hr) | Return<br>Frequency      |
|------|-----------------|------------------|-----------------------------|-----------------------------------------|---------------------------------------------|--------------------------|
| 1    | 9/28/2004 1:00  | 28               | 3.68                        | 0.53                                    | 0.13                                        | 2-yr – 24hr              |
| 2    | 9/8/2004 4:00   | 25               | 2.21                        | 0.63                                    | 0.09                                        | 1-yr – 6hr               |
| 3    | 7/12/2004 9:00  | 27               | 1.99                        | 0.32                                    | 0.07                                        |                          |
| 4    | 4/12/2004 17:00 | 30               | 1.67                        | 0.25                                    | 0.06                                        |                          |
| 5    | 4/25/2004 14:00 | 35               | 1.67                        | 0.25                                    | 0.05                                        |                          |
| 6    | 7/23/2004 10:00 | 24               | 1.66                        | 0.33                                    | 0.07                                        |                          |
| 7    | 2/6/2004 5:00   | 33               | 1.63                        | 0.33                                    | 0.05                                        |                          |
| 8    | 7/18/2004 16:00 | 14               | 1.60                        | 0.64                                    | 0.11                                        |                          |
| 9    | 11/28/2004 2:00 | 12               | 1.50                        | 0.85                                    | 0.13                                        |                          |
| 10   | 7/27/2004 15:00 | 18               | 1.45                        | 0.41                                    | 0.08                                        |                          |
| 11   | 9/17/2004 22:00 | 12               | 1.44                        | 1.33                                    | 0.12                                        | 1-yr – 2hr<br>2-yr – 1hr |
| 12   | 6/25/2004 17:00 | 5                | 1.39                        | 0.40                                    | 0.28                                        |                          |
| 13   | 11/12/2004 7:00 | 23               | 1.08                        | 0.10                                    | 0.05                                        |                          |
| 14   | 5/12/2004 16:00 | 2                | 1.08                        | 0.99                                    | 0.54                                        |                          |
| 15   | 11/4/2004 14:00 | 16               | 1.03                        | 0.20                                    | 0.06                                        |                          |
| 16   | 7/5/2004 3:00   | 12               | 1.00                        | 0.69                                    | 0.08                                        |                          |
| 17   | 12/1/2004 4:00  | 10               | 1.00                        | 0.18                                    | 0.10                                        |                          |
| 18   | 8/16/2004 0:00  | 21               | 0.94                        | 0.60                                    | 0.04                                        |                          |
| 19   | 8/21/2004 14:00 | 3                | 0.84                        | 0.81                                    | 0.28                                        |                          |
| 20   | 12/6/2004 12:00 | 39               | 0.83                        | 0.20                                    | 0.02                                        |                          |

 Table H-6: Top 20 Rainfall Events by Depth in 2004



# SECTION I - HYDROLOGIC AND HYDRAULIC MODELING

### I.1 PREVIOUS H&H MODELS

An integrated PVSC collection system Hydrologic and Hydraulic (H&H) model is needed for the purpose of evaluating CSO control alternatives and developing a holistic CSO Long Term Control Plan (LTCP) for all the combined municipalities in the PVSC sewer service area.

Prior to this project/study, several H&H models were already developed using different modeling software platforms to simulate collection systems in several CSO communities. These models are henceforth referred to as "pre-LTCP" models. Detailed modeling information including communities, permittee, WRRF, and modeling software for these pre-LTCP models are summarized in **Table I-1**. The service area locations served by each individual models are shown in **Figure I-1**.

| Model                                      | Community                | WWTP               | Permittee           | Software     | County  |
|--------------------------------------------|--------------------------|--------------------|---------------------|--------------|---------|
|                                            | City of Paterson         | PVSC               | Paterson City       |              | Passaic |
|                                            | City of Newark           | PVSC               | Newark City         |              | Essex   |
| PVSC Interceptor<br>Model                  | Town of Kearny           | PVSC               | Town of Kearny      | InfoWorks CS | Hudson  |
|                                            | Borough of East Newark   | PVSC               | East Newark Borough |              | Hudson  |
|                                            | Town of Harrison         | PVSC               | Harrison Town       |              | Hudson  |
| Bayonne Model                              | City of Bayonne          | PVSC               | City of Bayonne     | InfoWorks CS | Hudson  |
| North Bergen<br>Model (PVSC)<br>(2 models) | Township of North Bergen | PVSC               | North Bergen MUA    | PC-SWMM      | Hudson  |
| Jersey City                                | City of Jersey City      | PVSC               | Jersey City MUA     | XP-SWMM      | Hudson  |
| North Bergen<br>(Woodcliff)*               | Township of North Bergen | NBMUA<br>Woodcliff | North Bergen MUA    | PC-SWMM      | Hudson  |
| Guttenberg*                                | Town of Guttenberg       | NBMUA<br>Woodcliff | Town of Guttenberg  | SWMM         | Hudson  |

### Table I-1: PVSC Service Area Previous H&H Models Summary

\* North Bergen (Woodcliff) and Guttenberg areas are discussed under a separate System Characterization Report for NBMUA Woodcliff and Guttenberg.

Four of the pre-LTCP H&H models in **Table I-1** were used for developing the integrated PVSC LTCP model, including one PVSC Interceptor model, one Bayonne model and two North Bergen models. Brief descriptions of these four models are included in the following subsections. The Jersey City model was not detailed in this report because it was determined that Jersey City would manage its own model and submit a separate System Characterization Report.

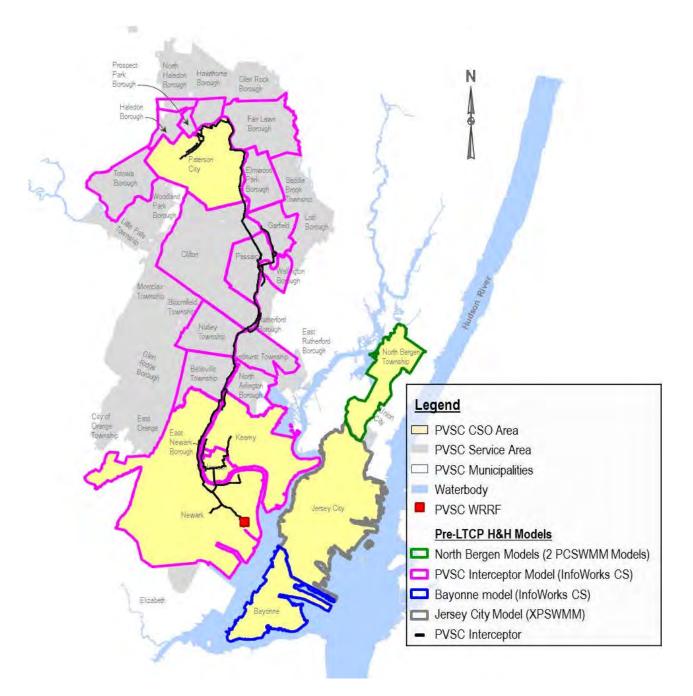



Figure I-1: Service Area Simulated in the Pre-LTCP Models



# I.1.1 PVSC Interceptor Model

The PVSC Interceptor Model is the largest of the four pre-LTCP models used during model integration. **Figure I-2** shows its model network in InfoWorks CS. The model was lastly updated and calibrated by HDR in June 2016. It provides the backbone for the new integrated model. It simulates PVSC's service area west of the Newark Bay, including five of the eight combined sewer municipalities and seventeen separately sewered municipalities that are adjacent to and directly connected to the main interceptor. The five combined municipalities are the City of Paterson, the Borough of East Newark, the Town of Kearny, the Town of Harrison, and the City of Newark. The separately sewered municipalities include Totowa, Haledon, North Haledon, Prospect Park, Hawthorne, Fair Lawn, Elmwood Park, Clifton, Garfield, Passaic, Wallington, Nutley, East Rutherford, Rutherford, Lyndhurst, North Arlington, and Belleville (municipalities are listed based on their geographical location from north to south). The corresponding service area simulated in the model are shown as the subcatchments in **Figure I-2** and the pink-highlighted areas in **Figure I-1**.

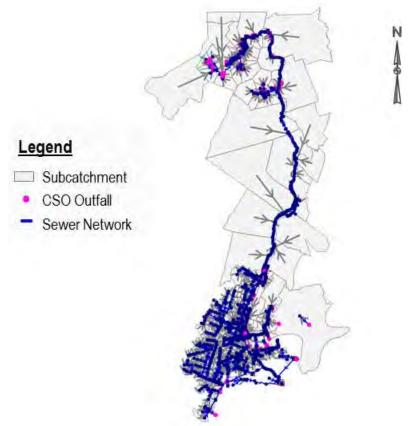



Figure I-2: Received PVSC Interceptor Model

Major features of the pre-LTCP PVSC Interceptor Model are listed below. More detailed modeling information can be found in the technical memorandum "PVSC Model Recalibration" by HDR, June 2017.

- The model was calibrated/validated to eighteen temporary meters (fourteen in the main



interceptor and four in branch interceptors) using flow metering data from May 8<sup>th</sup> to October 5<sup>th</sup> 2015. Flow data at the three PVSC <u>Venturi</u> meters (Paterson, Passaic, and Second River), force mains, South Side Interceptor (SSI), and total treatment plant flow were also used in the calibration/validation. Historically, the model was modified and updated along different time periods, and was calibrated to 1999-2001 period and 2005-2006 period, during these two time periods monitored data was collected.

- The model did not include the Hudson County Force Main. Flow from the Hudson County Force Main was included as hourly inflow time series in the model to allow the model to simulate the total flows to the WRRF.
- The operation of the plant main gates and regulated regulator gates in Newark were simulated with real time control (RTC) rules based on the actual operation logs.
- The rainfall derived inflow and infiltration (RDII) for the separately sewered municipalities were simulated using the rational method (Q=CIA), where flow is a function of the drainage area, rainfall intensity and a runoff coefficient.
- The model was created based on PVSC datum (the PVSC datum is 100 feet below Mean Sea Level (MSL) at Sandy Hook).

## I.1.2 Bayonne Model

The pre-LTCP Bayonne Model was created in InfoWorks CS. The model was lastly updated by HDR/Mott MacDonald. **Figure I-3** shows its model network in InfoWorks CS. The model simulates the collection system in the City of Bayonne. The corresponding service area simulated in the model is shown as the subcatchments in **Figure I-3** and the blue-highlighted area in **Figure I-1**.

Major features of the pre-LTCP Bayonne Model are listed below.

- The model simulates the entire sewer service area in the City of Bayonne. Because the City does not have its own wastewater treatment facility, sewer flows collected from the City are pumped to the Bayonne Force Main and further conveyed to the Hudson County Force Main to the PVSC WRRF for treatment. The received Bayonne model does not include the Hudson County Force Main and downstream treatment, the model ends at the Bayonne Force Main.
- The operation of eleven regulated regulator gates in Bayonne are simulated with real time control (RTC) rules based on the correlations between the gate opening and water depth.
- No boundary conditions were applied for CSO outfalls.
- The Bayonne Model was created based on MSL at Sandy Hook (the PVSC datum is 100 feet below MSL at Sandy Hook).



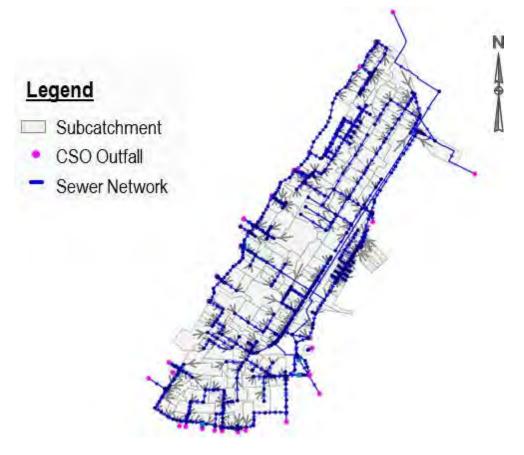



Figure I-3: Received Bayonne Model

# I.1.3 North Bergen Models

The two pre-LTCP North Bergen models were lastly updated by Kleinfelder. Both were originally created in PCSWMM; however, the models were converted to EPA SWMM5 for the convenience of model integration in InfoWorks ICM. **Figure I-4** shows the model networks in EPASWMM. The subcatchments in the EPASWMM model are not GIS based, the corresponding service area simulated by these two models are shown in the green-highlighted areas in **Figure I-1**.

Major features of the two North Bergen models are listed below. More detailed modeling information can be found in the Report "*Adaptation of SWMM to Simulate the Combined Sewer Overflows of the North Bergen MUA*" by Najarian Associates, January 2007.

- The two models represent the Northerly Interceptor System and Southerly Interceptor Sewer System, respectively.
- Both models are needed to represent the area of North Bergen served by PVSC WRRF.



- Both models are non-GIS based skeleton-type SWMM models.
- The models were calibrated to five flow metered locations within the watershed on the Northerly Interceptor for October-December of 2002, and five metered locations within the watershed on the Southerly Interceptor for February-April of 2003.
- There is no real time control rule set up for the regulator gates, suggesting the gates were not regulated during wet weather conditions. All regulator gates were assumed to be frozen in the open position and all gates were set at a level that just allowed the dry weather flow to pass without obstacles.
- All CSO outfalls were assumed to be free outfalls and thus no boundary conditions were applied.
- The North Bergen models were created based on the MSL at Sandy Hook (the PVSC datum is 100 feet below the MSL at Sandy Hook).



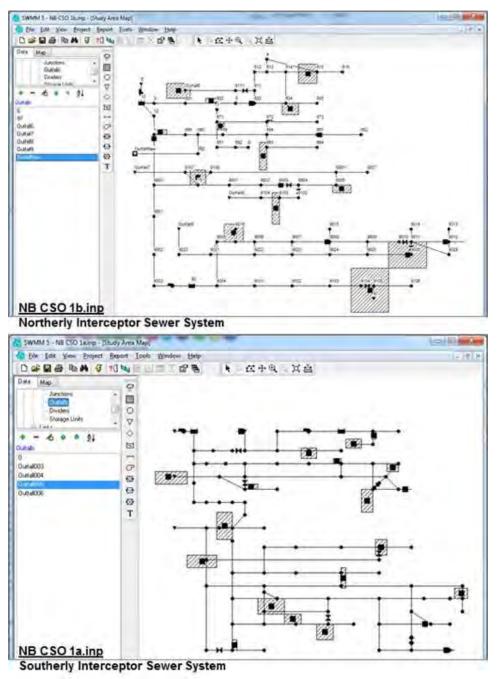



Figure I-4: Received North Bergen Model

## **I.2** PVSC DISTRICT LTCP H&H MODEL INTEGRATION & DEVELOPMENT

The LTCP PVSC District H&H model was developed by integrating these four pre-LTCP models (the PVSC Interceptor model, the Bayonne model and the two North Bergen models) into one complex PVSC model in InfoWorks ICM v9.0. The model was then expanded to include all 40 municipalities with separate sewer service area that contribute flows to the PVSC WRRF.



The calibrated Jersey City model (XPSWMM) provided by the Jersey City MUA was also converted to InfoWorks and integrated into the PVSC model to complete the connections of North Bergen model and Bayonne model to the Hudson County Force Main and PVSC WRRF.

### I.2.1 Integration of PVSC Interceptor Model

The original PVSC Interceptor Model (InfoWorks CS) was integrated to the to the PVSC LTCP model (InfoWorks ICM) through a straight forward procedure of transferring data from CS to ICM. Most of the model network features remain the same during the transferring except the following major changes.

### Paterson Re-delineation

In the Pre-LTCP PVSC Interceptor model, the subcatchment boundaries in the City of Paterson were delineated based on Theissen polygons. To better represent the actual drainage characteristics and sewer connectivity in the area, the subcatchments were re-delineated based on GIS information of contours, sanitary sewer, storm sewer, etc. **Figure I-5** shows the City of Paterson delineation before (orange polygon in **Figure I-5 (a)**) and after (blue polygon in **Figure I-5 (b)**) model integration. Subcatchments including red sewer lines are the separate areas.

### Paterson Internal Regulator

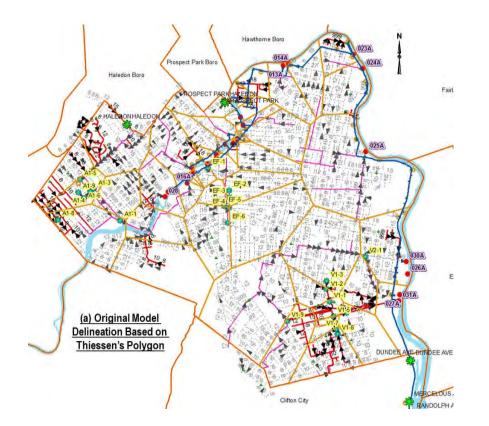
There are 24 internal regulators in the City of Paterson to relieve extreme wet weather flows to storm sewers connecting to CSO outfall points. Typically the internal regulator conveys dry weather flow and a portion of wet weather flow to the PVSC Interceptor through a downstream CSO regulator. During larger storm events overflow would occur when the water surface level in the internal regulator is above its overflow weir crest. The extreme wet weather flows are conveyed to a storm sewer connecting to a CSO outfall. The description of individual internal regulators is detailed in **Table I-2**. **Table I-3** summarizes internal regulators in the area and their corresponding downstream CSO regulators and overflow CSO outfalls.

**Figure I-6 (a)** shows the model network around the internal regulators (highlighted with the dashed red lines) in the Pre-LTCP PVSC Interceptor Model. The conveyance of flows from the internal regulator overflow weir to CSO outfall were not included. Instead, artificial outfalls were created and connected to the overflow weirs. In the integrated PVSC LTCP Model, the artificial outfalls were removed, and the model network of manholes and sewers were extended from the internal regulator overflow weirs to CSO outfalls based on sewer GIS data and actual sewer connectivity shown in **Table I-2** and **Table I-3**. **Figure I-6 (b)** shows the updated model network in the integrated model.



| Outfall # or<br>Internal<br>Regulator # | Location                                                | Description                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Outfall 028                             | S.U.M. Park 2                                           | 120 " RCP                                                                                                                                                                                                                                                                                                                                           |
| A1-1                                    | Westside Park                                           | Side overflow weir with 36" RCP pipes in and out.<br>Normal flow (including dry weather flow and a small portion of wet weather flow) discharges<br>to 36" pipe flowing south cross the Passaic River, and then to the PVSC interceptor at CSO-<br>001A.<br>Wet weather overflow is through a 36" pipe to a 69" storm sewer connecting to CSO-028A. |
| A1-2                                    | Union. &<br>Sherwood Ave.                               | Side overflow Weir - Plugged                                                                                                                                                                                                                                                                                                                        |
| A1-3                                    | Sherwood<br>Avenue                                      | Side overflow weir with 30" RCP pipes in and out.<br>Normal flow discharges to 30" pipe passing to the A1-1 Regulator and connecting to the<br>PVSC interceptor at CSO-001A.<br>Wet weather overflow is through a 24" pipe to a 90" storm sewer connecting to CSO-028A.                                                                             |
| A1-4                                    | Linwood. &<br>Crosby Ave.                               | Side overflow weir at the bench with 18" VCP pipes in and 12 "out.<br>Normal flow discharges to 12" pipe passing thru the A1-1 Regulator and connecting to the<br>PVSC interceptor at CSO-001A.<br>Wet weather overflow is through an 18" pipe to a 30" storm sewer connecting to CSO-028A.                                                         |
| A1-5                                    | Linwood. &<br>Chamberlain<br>Ave.                       | Side overflow weir at the bench with 12" & 24" VCP pipes in and 18" out.<br>Normal flow discharges to 18" pipe passing thru the A1-1 Regulator and connecting to the<br>PVSC interceptor at CSO-001A.<br>Wet weather overflow is through a 12" pipe to a 30" storm sewer connecting to CSO-028A.                                                    |
| A1-6                                    | Richmond &<br>Crosby Avenue                             | Side overflow weir at the bench with 12" ACP pipes in and out.<br>Normal flow discharges to 12" pipe passing thru the A1-1 Regulator and connecting to the<br>PVSC interceptor at CSO-001A.<br>Wet weather overflow is through a 12" pipe to 90" storm sewer connecting to CSO-028A.                                                                |
| A1-7                                    | Crosby. &<br>Emerson Ave.                               | Side overflow weir at the bench with 12" VCP pipes in and out.<br>Normal flow discharges to 12" pipe passing thru the A1-1 Regulator and connecting to the<br>PVSC interceptor at CSO-001A.<br>Wet weather overflow is through a 12" pipe to 60" storm sewer connecting to CSO-028A.                                                                |
| A1-8                                    | Crosby. &<br>Maitland Ave.                              | Side overflow weir at the bench with 10" & 12" VCP pipes in and 12" out.<br>Normal flow discharges to 12" pipe passing thru the A1-1 Regulator and connecting to the<br>PVSC interceptor at CSO-001A.<br>Wet weather overflow is through an 18" pipe to 60" storm sewer connecting to CSO-028A.                                                     |
| A1-9                                    | Richmond<br>Avenue between<br>Crosby and<br>Chamberlain | Side overflow weir at the bench with 10" & 12" VCP pipes in and 12" out.<br>Normal flow discharges to 12" pipe passing thru the A1-1 Regulator and connecting to the<br>PVSC interceptor at CSO-001A.<br>Wet weather overflow is through an 18" pipe to 60" storm sewer connecting to CSO-028A.                                                     |
| Outfall 029A                            | Loop Road                                               | Twin 108" RCP, each pipe fitted with dual upturned flow diffusers at the outfall point                                                                                                                                                                                                                                                              |
| EF-2                                    | Van Houten<br>Street                                    | An incoming 18" VCP pipe is regulated by a 7.5"H x 9.75"W gate and a side overflow weir.<br>Normal flow discharges to a 15" VCP connecting to the PVSC interceptor at CSO-006A.<br>Wet weather overflow is through a 36" RCP storm sewer connecting to CSO-029A.                                                                                    |
| EF-3                                    | Ellison Street                                          | An incoming 36" VCP pipe is regulated by a 7.5"H x 15.75"W gate and a side overflow weir.<br>Normal flow discharges to an 18" VCP connecting to the PVSC interceptor at CSO-006A.<br>Wet weather overflow is through a 48" RCP storm sewer connecting to CSO-029A.                                                                                  |

| Table I-2: Paterson | Internal Regulator | Description |
|---------------------|--------------------|-------------|
|                     | internal Regulator | Description |




| Outfall # or<br>Internal<br>Regulator # | Location                                 | Description                                                                                                                                                                                                                                                                                                                        |  |  |
|-----------------------------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| EF-4                                    | Market Street                            | An incoming 48" RCP is regulated by a 12"H x 12"W gate and a side overflow weir.<br>Normal flow discharges to an 18" VCP connecting to the PVSC interceptor at CSO-006A.<br>Wet weather overflow is through a 48" RCP storm sewer connecting to CSO-029A.                                                                          |  |  |
| EF-5                                    | Market Street                            | An incoming 18" VCP is regulated by a 5"H x 9.25"W gate and a side overflow weir.<br>Normal flow discharges to a 12" VCP connecting to the PVSC interceptor at CSO-006A.<br>Wet weather overflow is through a 30" RCP storm sewer connecting to CSO-029A.                                                                          |  |  |
| EF-6                                    | Railroad Ave<br>and Grand<br>Street      | An incoming flow is in a 77"H x 121"W concrete box culvert and is regulated by a 16"H x 27.5"W gate and a side overflow weir.<br>Normal flow discharges to a 36" RCP connecting to the PVSC interceptor at CSO-006A.<br>Wet weather overflow is through a 120" RCP storm sewer connecting to CSO-029A                              |  |  |
| Outfall 030                             | Nineteenth<br>Avenue                     | 90 " RCP                                                                                                                                                                                                                                                                                                                           |  |  |
| V2-1                                    | 19th Avenue<br>Regulator                 | An incoming 70.5"H x 85"W brick pipe is regulated by two (2) 19.25' long side overflow weirs with mechanical solids/floatables screening.<br>Normal flow discharges to a 70.5"H x 85"W brick pipe connecting to the PVSC interceptor at CSO-027A.<br>Wet weather overflow is through a 90" RCP storm sewer connecting to CSO-030A. |  |  |
| Outfall 031                             | Route 20<br>Bypass                       | 120 " RCP                                                                                                                                                                                                                                                                                                                          |  |  |
| V1-1                                    | 23rd & Trenton<br>Avenue                 | An incoming 15" VCP pipe is regulated by a 2.5' long side overflow weir.<br>Normal flow discharges to a 15" VCP connecting to the PVSC interceptor at CSO-027A.<br>Wet weather overflow is through a 42" RCP storm sewer connecting to CSO-031A.                                                                                   |  |  |
| V1-2                                    | 22nd & Trenton<br>Avenue                 | An incoming 15" VCP pipe is regulated by a 5' long side overflow weir.<br>Normal flow discharges to a 15" VCP connecting to the PVSC interceptor at CSO-027A.<br>Wet weather overflow is through a 42" RCP storm sewer connecting to CSO-031A.                                                                                     |  |  |
| V1-3                                    | Trenton Avenue<br>between 22nd &<br>21st | Two incoming 8" VCP pipes are regulated by a side overflow weir.<br>Normal flow discharges to a 12" pipe connecting to the PVSC interceptor at CSO-027A.<br>Wet weather overflow is through a 10" VCP to a 30" RCP storm sewer connecting to CSO-<br>031A.                                                                         |  |  |
| V1-4                                    | Maryland<br>Avenue                       | Three incoming pipe (10" VCP, 12" VCP, and 30" RCP) are regulated by a 10' long side overflow weir.<br>Normal flow discharges to a 30" RCP connecting to the PVSC interceptor at CSO-027A.<br>Wet weather overflow is through a 102" RCP storm sewer connecting to CSO-031A.                                                       |  |  |
| V1-5                                    | Trenton &<br>Maryland<br>Avenue          | Two incoming pipe (24" RCP) are regulated by a 9' long side overflow weir.<br>Normal flow discharges to a 30" pipe connecting to the PVSC interceptor at CSO-027A.<br>Wet weather overflow is through a 102" RCP storm sewer connecting to CSO-031A.                                                                               |  |  |
| V1-6                                    | Trenton &<br>Florida Avenue              | An incoming 24" RCP pipe is regulated by 9' long side overflow weir.<br>Normal flow discharges to a 24" RCP connecting to the PVSC interceptor at CSO-027A.<br>Wet weather overflow is through an 84" RCP storm sewer connecting to CSO-031A.                                                                                      |  |  |
| V1-7                                    | Trenton & Illinois<br>Avenue             | An incoming 24" RCP pipe is regulated by 11' long side overflow weir.<br>Normal flow discharges to a 24" RCP connecting to the PVSC interceptor at CSO-027A.<br>Wet weather overflow is through an 84" RCP storm sewer connecting to CSO-031A.                                                                                     |  |  |

| Outfall # or<br>Internal<br>Regulator # | Location                              | Description                                                                                                                                                                                                                                                                                       |  |
|-----------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| V1-8                                    | Trenton &<br>Michigan<br>Avenue       | An incoming 24" RCP pipe is regulated by an 18' long side overflow weir with mechanical solids/floatables screening.<br>Normal flow discharges to a 24" RCP connecting to the PVSC interceptor at CSO-027A.<br>Wet weather overflow is through a 60" RCP storm sewer connecting to CSO-031A.      |  |
| V1-9                                    | Alabama & E.<br>Railway Avenue        | An incoming 30"x42" Brick pipe is regulated by a 16' long side overflow weir with mechanical solids/floatables screening.<br>Normal flow discharges to a 36" RCP connecting to the PVSC interceptor at CSO-027A.<br>Wet weather overflow is through a 54" RCP storm sewer connecting to CSO-031A. |  |
| Outfall 033A                            | Tyler Street<br>/Washington<br>Street | Outfall is direct to Passaic River at CSO-033A                                                                                                                                                                                                                                                    |  |
| EF-1                                    | River Street                          | An incoming 48" RCP is regulated by a 7.5"H x 12.375"W gate with a side overflow weir.<br>Normal flow discharges to a 15" VCP connecting to the PVSC interceptor at PVSC MH243.<br>Wet weather overflow is through a 48" RCP storm sewer connecting to CSO-033A.                                  |  |

# Table I-3: Paterson Internal Regulator Downstream Flow Conveyance

| Regulator #      | Normal Flow             | Overflow |
|------------------|-------------------------|----------|
| A1-1 to A1-9 (8) | P_001A Regulator        | P_028A   |
| EF-2 to EF-6 (5) | P_006A Regulator        | P_029A   |
| V2-1             | P_027A Regulator        | P_030A   |
| V1-1 to V1-9 (9) | P_027A Regulator        | P_031A   |
| EF-1             | PVSC Interceptor MH 243 | P_033A   |





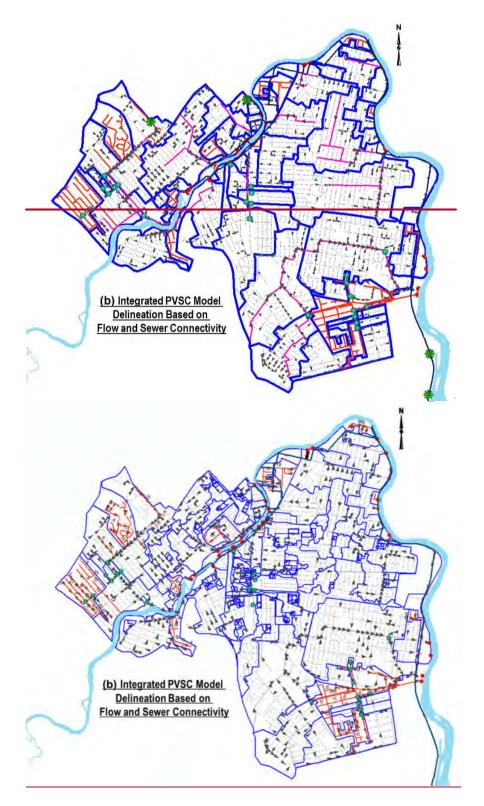
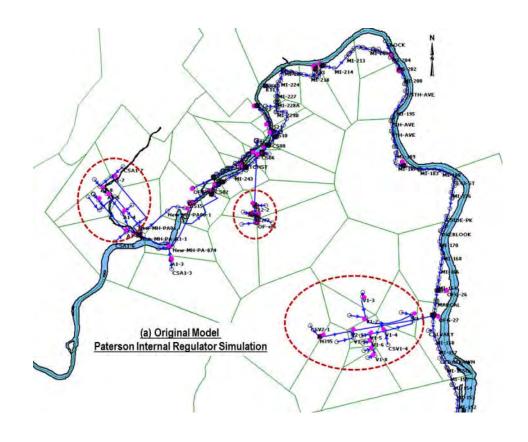




Figure I-5: Subcatchment Re-delineation of Paterson City







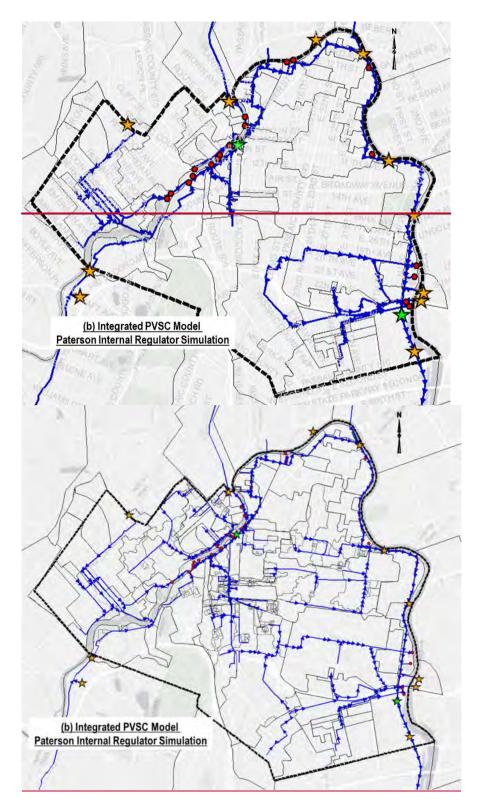



Figure I-6: Paterson City Internal Regulator Simulation

Model Network of the CSO Municipalities in the Integrated PVSC Model



There are five CSO municipalities included in the pre-LTCP PVSC Interceptor Model: Paterson, Newark, East Newark, Kearny, and Harrison. The model network of these five municipalities in the integrated model are shown in **Figure I-7** through **Figure I-11**. Quantities of subcatchments, nodes and links are also shown on the map. Permanent meters and temporary meters indicated on the map are the meters used for model calibration.



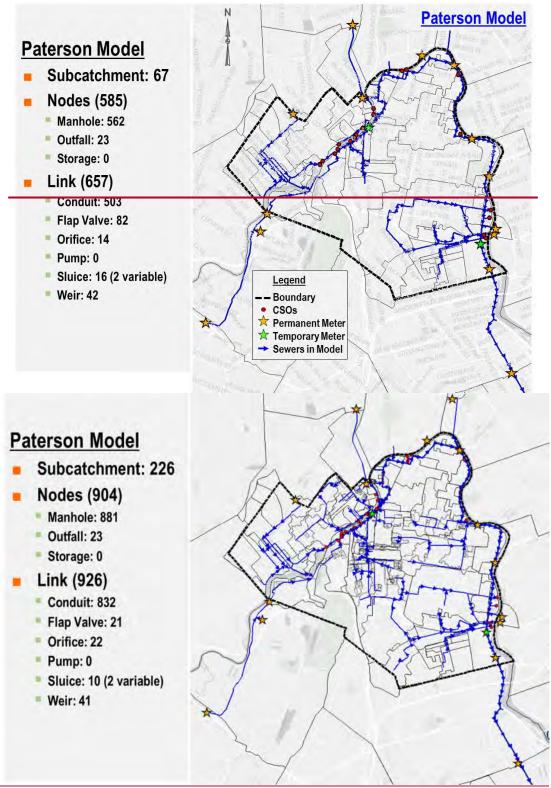



Figure I-7: Snapshot of Model Network in Paterson



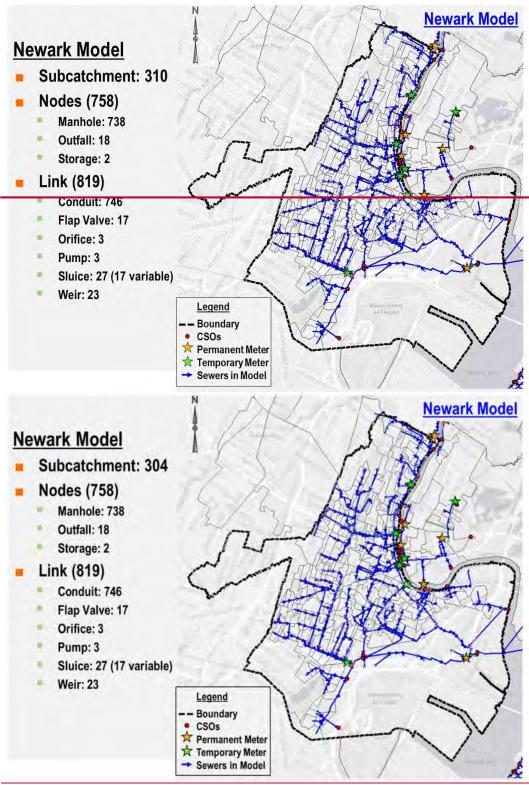



Figure I-8: Snapshot of Model Network in Newark





Figure I-9: Snapshot of Model Network in East Newark

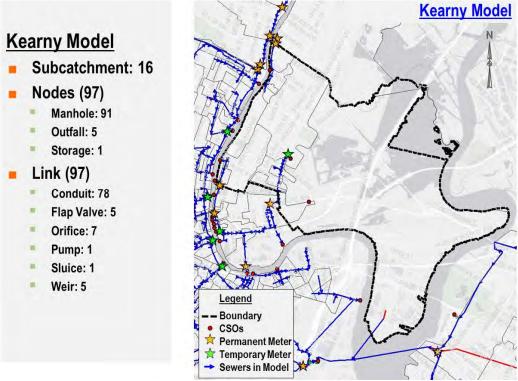



Figure I-10: Snapshot of Model Network in Kearny



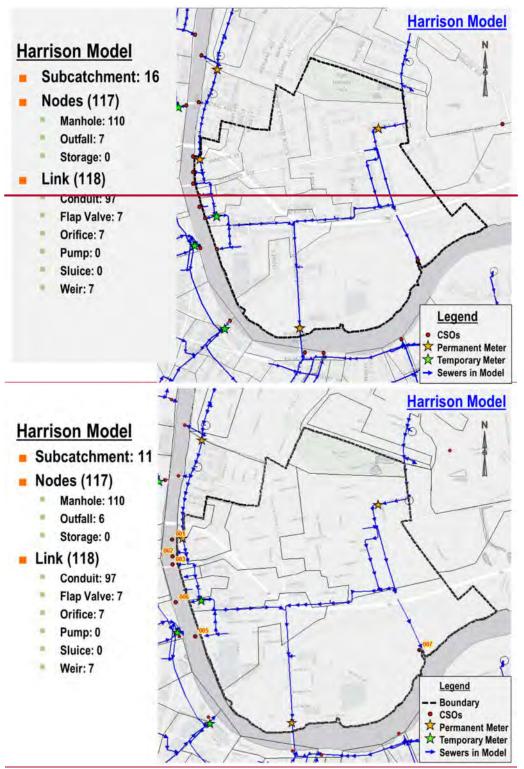



Figure I-11: Snapshot of Model Network in Harrison

## I.2.2 Integration of Bayonne Model

The pre-LTCP Bayonne Model (InfoWorks CS) was integrated <u>to into</u> the PVSC LTCP model (InfoWorks ICM) through a straight forward procedure of transferring data from CS to ICM. All of the model network features remain the same during the transferring except the following minor changes.

- Updated IDs of subcatchments, nodes and links to start with "BA-"
- All Real Time Controls (RTCs) were appended to the integrated model.

The eleven RTCs are used to control regulator gate openings based on the water levels. **Table I-4** shows the level-opening table settings prior to and post model integration. The "output" column in the table is corresponded corresponds to the regulator gate opening with a default unit of "meters". The values used in the "output" column in from the original-pre-LTCP Bayonne model are corresponded to the units of "feet", which should had to be converted to "meters". This is completed for all the eleven RTC tables in the integrated model.

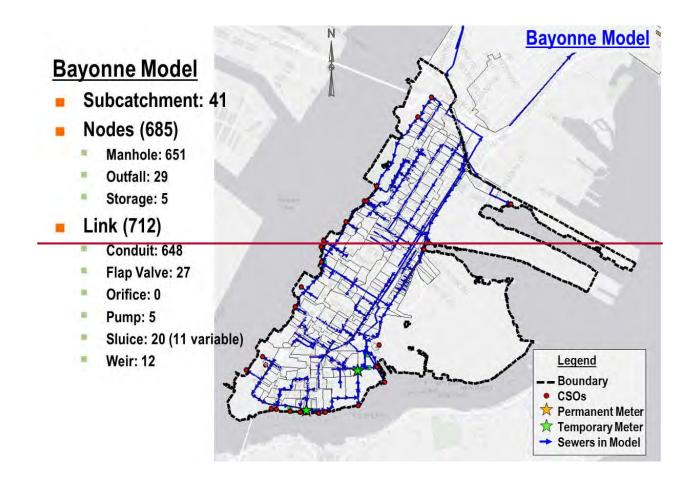
- Updated datum from the MSL to PVSC datum
- Extended the 36" Bayonne force main from the municipality boundary to the Jersey City West Pump Station to connect to the Hudson County Force Main.

The model network for the City of Bayonne in the integrated model is shown in **Figure** I-12. Quantities of subcatchments, nodes and links are also shown on the map. Permanent meters and temporary meters indicated on the map are the meters used for model calibration.



|            | Original Bayonne Model |                     | Integrated PVSC Model |                     |
|------------|------------------------|---------------------|-----------------------|---------------------|
|            | Input (ft)             | Output <sup>1</sup> | Input (ft)            | Output <sup>2</sup> |
| B1A-R011.S | 0                      | 0.625               | 0                     | 0.190               |
|            | 0.751                  | 0.313               | 0.751                 | 0.095               |
|            | 1.499                  | 0                   | 1.499                 | 0.000               |
|            | 0                      | 1                   | 0                     | 0.305               |
| BA-R014.S  | 1.749                  | 0.5                 | 1.749                 | 0.152               |
|            | 3.501                  | 0                   | 3.501                 | 0.000               |
|            | 0                      | 1.33                | 0                     | 0.405               |
| BA-R018.S  | 1.749                  | 0.665               | 1.749                 | 0.203               |
|            | 3.501                  | 0.665               | 3.501                 | 0.203               |
|            | 0                      | 1                   | 0                     | 0.305               |
| BA-R003.S  | 2.251                  | 0.5                 | 2.251                 | 0.152               |
|            | 4.501                  | 0.5                 | 4.501                 | 0.152               |
|            | 0                      | 1                   | 0                     | 0.305               |
| BA-R006.S  | 1.499                  | 0.5                 | 1.499                 | 0.152               |
|            | 2.999                  | 0.5                 | 2.999                 | 0.152               |
|            | 0                      | 0.625               | 0                     | 0.190               |
| BA-R008.S  | 1.25                   | 0.313               | 1.25                  | 0.095               |
|            | 2.5                    | 0.313               | 2.5                   | 0.095               |
|            | 0                      | 1                   | 0                     | 0.305               |
| BA-R009.S  | 1.001                  | 0.5                 | 1.001                 | 0.152               |
|            | 2.001                  | 0.5                 | 2.001                 | 0.152               |
|            | 0                      | 0.417               | 0                     | 0.127               |
| BA-R010.S  | 0.499                  | 0.209               | 0.499                 | 0.064               |
|            | 1.001                  | 0.209               | 1.001                 | 0.064               |
|            | 0                      | 1.083               | 0                     | 0.330               |
| BA-R012.S  | 1.001                  | 0.542               | 1.001                 | 0.165               |
|            | 2.001                  | 0                   | 2.001                 | 0.000               |
|            | 0                      | 0.417               | 0                     | 0.127               |
| BA-R015.S  | 1.749                  | 0.209               | 1.749                 | 0.064               |
|            | 3.501                  | 0                   | 3.501                 | 0.000               |
|            | 0                      | 1                   | 0                     | 0.305               |
| BA-R017.S  | 1.375                  | 0.5                 | 1.375                 | 0.152               |
|            | 2.749                  | 0                   | 2.749                 | 0.000               |

### Table I-4: Bayonne RTC Table Update


Note:

1. The data is corresponded to unit of feet, however the model considers the data in unit of meter because the default unit in InfoWorks ICM is meter.

2. The data is corrected to match unit of meter.

# THIS PAGE INTENTIONALLY LEFT BLANK







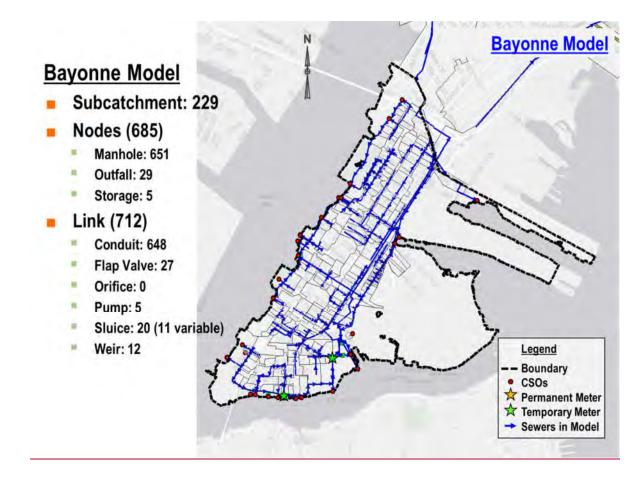



Figure I-12: Snapshot of Model Network in Bayonne

## I.2.3 Integration of North Bergen Models

The two pre-LTCP North Bergen models (**Figure I-4**, EPASWMM, one for north side and the other for the south side) were imported to the InfoWorks ICM to obtain the input information for subcatchments, nodes and links. The pre-LTCP models were not GIS based so additional efforts were required to prepare a spatially based model network for North Bergen.

## North Bergen Subcatchments

A paper copy of the North Bergen subcatchment delineation was obtained from the modeling document "Adaptation of SWMM to Simulate the Combined Sewer Overflows of the North Bergen MUA" (January 2007, by Najarian Associates). The paper copy was used to prepare a digitized polygon shape file in GIS to represent subcatchments (**Figure I-13**). The subcatchment ID was assigned to the polygons according to the acreage information in the model document (**Figure I-14**). The subcatchment shape file was then incorporated into the integrated model through "Data Import Centre".



#### Passaic Valley Sewerage Commission Service Area System Characterization Report

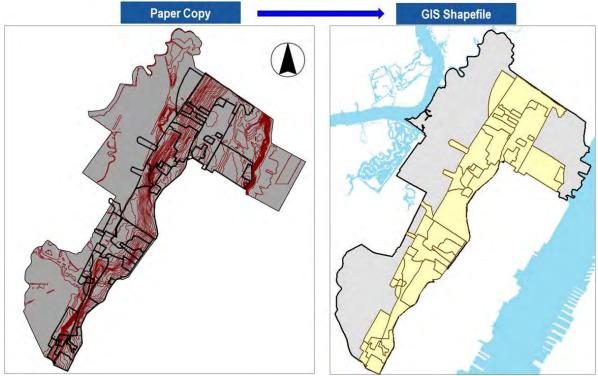



Figure I-13: Digitizing Model Subcatchment Based on Paper Copy

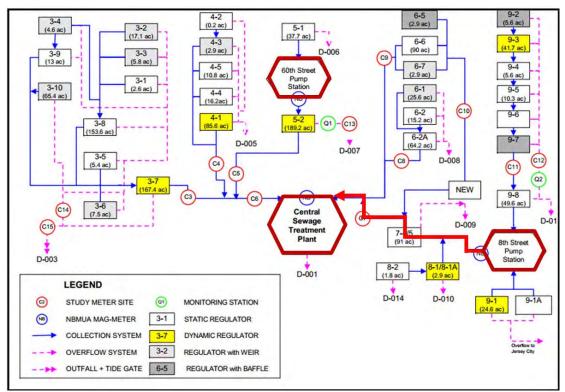



Figure I-14: Model Schematics from Previous Modeling Document



## North Bergen Sewer Network

The North Bergen manholes and sewers to be included in the integrated model were selected based on sewer connectivity shown in GIS shape files (

**Figure I-15**) and schematic sewers shown in the EPASWMM model (**Figure I-4**). The selected manholes and sewers were then incorporated into the integrated model through "Data Import Centre".

Detail sewer data (invert, dimension, etc.) and manhole data (invert, rim elevation, etc.) were not available from the sewer GIS file, therefore the invert and pipe size information from the received EPASWMM model were used for the integrated model.

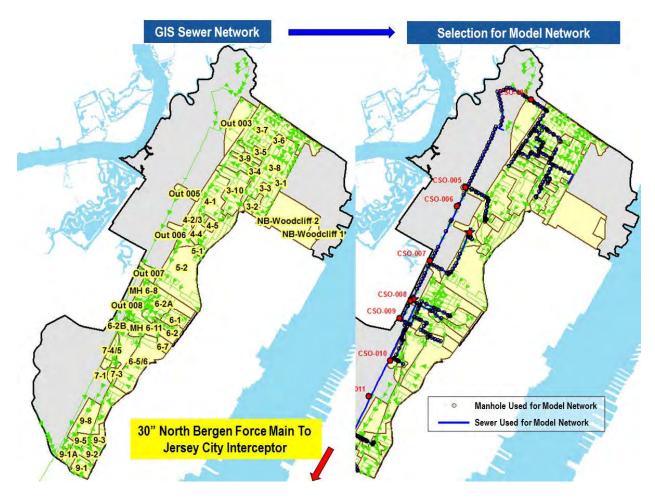



Figure I-15: Selected Manhole and Sewers for Model Network

## North Bergen Sewer Connectivity Update

In the pre-LTCP model, the 8<sup>th</sup> Street Pump Station pumps flow to the downstream sewer system. The joined pumped flow and local flow were conveyed to the Central Sewage Treatment Plant by gravity (**Figure I-14**). In 2010, the Central Sewage Treatment Plant was decommissioned and the Central Pump Station was built to convey flows from North Bergen to



Jersey City through a 30-in force main. With the decommission of the Central Sewage Treatment Plant, the 8<sup>th</sup> Street Pump Station no longer pumps flow to the downstream gravity sewer mains but instead it pumps flow to the 30-in force main. Flows from North Bergen are conveyed through the Jersey City's gravity sewer mains to the Jersey City West Pumping Station (JCWP). The JCWP pumps flows through the Hudson County Forcemain to the primary clarifier at the PVSC treatment plant.

The updated flow schematics shown in Figure I-16 is incorporated into the integrated model.

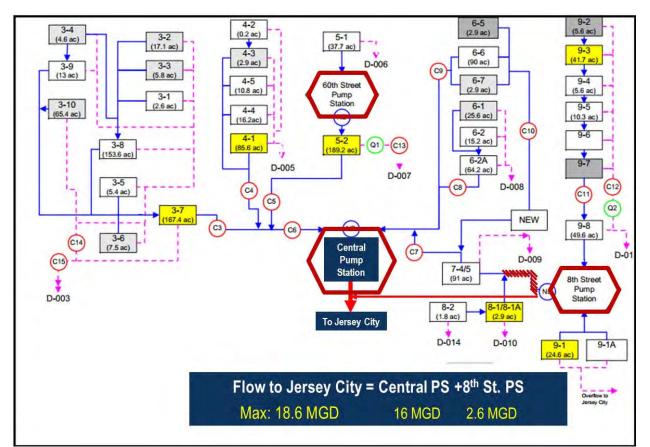



Figure I-16: Updated North Bergen Model Schematics

## North Bergen in the Integrated Model

In a summary, the integration of the North Bergen includes the following major steps:

- Updated IDs of subcatchments, nodes and links to start with "NB1A-" or "NB1B-"
- Model inputs are mostly derived from the received EPASWMM model
- Subcatchment and model network were updated to GIS-based
- Updated sewer network connectivity due to the decommission of the Central Sewer Treatment Plant
- Converted dry weather inputs to subcatchment inflows



- Added North Bergen Central Pump Station
- Updated pump curves based on received information for the 8<sup>th</sup> Street PS, 60<sup>th</sup> Street PS, and the North Bergen Central PS
- Updated datum from the MSL to PVSC datum
- Added the 30" North Bergen force main between the Central Pump Station and Jersey City Sewer System

The model network for North Bergen in the integrated model is shown in **Figure I-17** (not including the area draining to the Woodcliff Treatment Plant). Quantities of subcatchments, nodes and links are also shown on the map. Permanent meters and temporary meters indicated on the map are the meters used for model calibration.

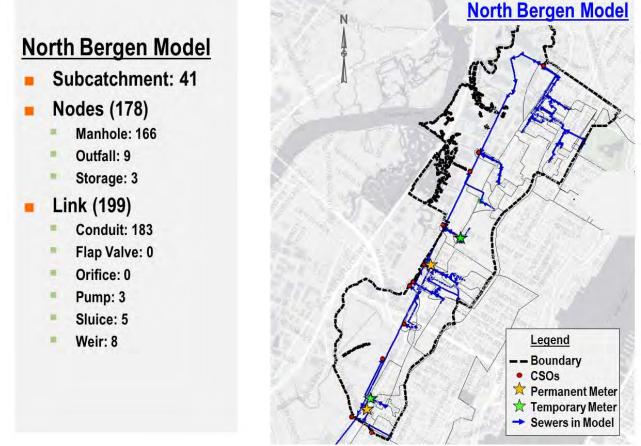



Figure I-17: Snapshot of Model Network in North Bergen



# I.2.5 Integration of Jersey City Model

The integration of Jersey City Model is not detailed in this report because Jersey City MUA is submitting a separate System Characterization Report. The calibrated Jersey City model (XPSWMM) received from the Jersey City MUA was converted to ICM and integrated into the PVSC LTCP model. This allows for the connections of the North Bergen and Bayonne collection systems to the Hudson County Force Main and PVSC WRRF.

The model network of Jersey City in the integrated model is shown in **Figure I-18**. Quantities of subcatchments, nodes and links are also shown on the map. Two permanent meters (Jersey City West Pump Station and Jersey City East Pump Station) shown on the map are the meters used for flow verification. Calibration/validation of Jersey City model is not part of the efforts of this study. Therefore, the characteristics of Jersey City model remain unchanged in the integrated PVSC model.

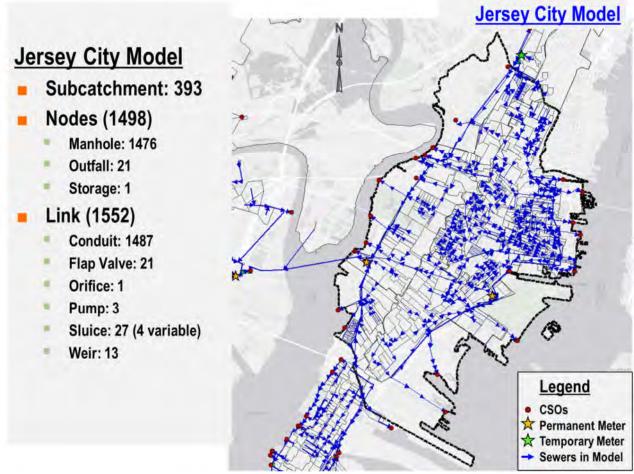



Figure I-18: Snapshot of Model Network in Jersey City

## I.2.6 Model Expansion to Whole Service Area

The above mentioned model integration incorporated all the communities with combined sewer systems into the same model, including

- Paterson (Passaic County)
- Newark (Essex County)
- East Newark (Hudson County)
- Kearny (Hudson County)
- Harrison (Hudson County)
- North Bergen (Hudson County), and
- Bayonne (Hudson County)
- Jersey City (Hudson County)

The model integration also brought a portion of the PVSC separate sewered communities in the system from the PVSC Interceptor Model (**Figure I-1**), including

- Totowa, Haledon, North Haledon, Prospect Park, Hawthorne, Clifton and Passaic from the Passaic County,
- Fair Lawn, Elmwood Park, Garfield, Wallington, Rutherford, East Rutherford, Lyndhurst, and North Arlington from the Bergen County, and
- Nutley and Belleville from the Essex County.

The integrated model was then expanded to include all PVSC served separate sewer communities. The newly added separate sewer communities are shown in **Figure I-19**, including

- Franklin Lakes, Woodland Park, Little Falls, North Caldwell, and Cedar Grove from the Passaic County,
- Ridgewood, Glen Rock, Saddle Brook, Lodi, South Hackensack, Hackensack, Wood-Ridge, and Hasbrouck Height from the Bergen County,
- Montclair, Glen Ridge, Bloomfield, City of Orange, East Orange, West Orange, South Orange, and Hillside from the Essex County, and
- Elizabeth City from Union County.

Communities simulated in the final PVSC model are shown in the schematic Figure I-20.

# I.2.7 Model Evaluation Group (MEG) Review

A Model Evaluation Group (MEG) comprised of recognized experts in hydrologic, hydraulic, hydrodynamic, and water quality monitoring and modeling was formed to provide technical review and guidance. The MEG was comprised of the following individuals:

- Dr. Alan Blumberg, Stevens Institute of Technology;
- Dr. Steve Chapra, Tufts University; and
- Dr. Wayne Huber, Oregon State University<u>, emeritus</u>.



The MEG's stated mission was as follows:

"The Model Evaluation Group (MEG) will review all significant technical aspects of the PVSC Long Term Control Plan model development. Model development will consist of three distinct components: Landside, Hydrodynamic, and Water Quality. The goal is to ensure that these model components are technically viable for use by the engineering team in the assessment of engineering alternatives and with withstand regulatory and public scrutiny.

The MEG will provide guidance, where appropriate, to improve or enhance the approaches and methodologies that lead to model development. The MEG will judge, individually and jointly, the technical acceptability of the major model components. If a component is deemed unacceptable, the MEG will outline steps to improve the technical acceptability of the model components."

Workshop meetings with the MEG, PVSC and their consultants, and the New Jersey Department of Environmental Protection were held to discuss the development and use of each of the models, as well as to receive feedback and input regarding the monitoring and modeling work. These meetings were held on the following dates:

- February 5, 2016;
- March 17, 2017; and
- September 15, 2017.
- December 5, 2018.

The MEG provided various comments related to the updating, calibration, and validation of the hydrologic and hydraulic model. The below **Table I-5** is a summary of key related comments and how the model was configured to address or respond to these comments. A copy of the MEG's comments for all the MEG meetings and a MEG memorandum providing PVSC Characterization Report Comments with responses are is included in Appendix B.

| MEG<br>Session           | MEG Comments                                                                                                                    | Responses                                                                                                                                                                                                        |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          | It might be useful to sample<br>sediment in the interceptor if it has<br>sedimentation issues.                                  | We will not sample sediment quality in sewers, but<br>will measure sediment depths at flow metering<br>sites                                                                                                     |
| Session 1<br>Feb 5, 2016 | Interceptor geometry is critical for hydraulic grade line determination.                                                        | The existing local models and the PVSC interceptor<br>model represent geometry adequately in all major<br>pipes. The integrated PVSC model has incorporated<br>good representation of the geometry of all pipes. |
|                          | Infiltration/inflow (I/I) was<br>discussed, but monitoring of<br>sanitary sewers was not<br>adequately described. Will I/I just | PVSC already monitors incoming flows from each of<br>its communities. The modeling can thus discretely<br>represent sanitary flow and I/I. Bacteria<br>concentrations have been separately assigned to           |

## Table I-5: Summary of MEG Comments and Responses



| MEG<br>Session            | MEG Comments                                                                                                                                                                                                | Responses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                           | get merged with downstream<br>sanitary sewage for estimating<br>bacteria concentrations?                                                                                                                    | each flow component and tracked through the collection system model.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                           | Was it stated that there is not a<br>significant groundwater infiltration<br>contribution to the sewer system,<br>or just that it will not be<br>dynamically modeled? How leaky<br>are the regional sewers? | Base flow in regional streams typically varies from<br>1.5 cfs per square mile (cfsm) in spring to less than<br>0.5 cfsm in fall; regional sewers can be expected to<br>exhibit similar variation in groundwater driven<br>infiltration flows. For areas where such seasonality<br>has not already been incorporated into the collection<br>system models, monthly infiltration factors have<br>been developed to represent this flow variation<br>based on long-term flow data already collected by<br>PVSC. We have compiled long-term flow data for the<br>wastewater treatment plant and key permanent<br>monitoring locations to establish seasonal infiltration<br>factors. |
|                           | Whether New York City utilized a<br>similar method for selecting their<br>typical year?                                                                                                                     | The New York City analysis utilized the same methodology that was previously used to select the JFK 1988 typical year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Session 2                 | Suggested that an official approval<br>of the typical year report would be<br>useful                                                                                                                        | The official approval of the typical year report was obtained from NJDEP on May 31, 2018.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Mar 17, 2017              | Whether Paterson Outfall 028 is<br>included in the model as a CSO?<br>NJDEP recently confirmed that it is<br>a CSO.                                                                                         | Paterson Outfall 028 was added to the integrated model as an active outfall.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                           | Whether in-pipe sedimentation is being considered?                                                                                                                                                          | Sedimentation is not included in the baseline model.<br>See response to Session 1 comment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                           | How are rain gauges assigned to a subcatchment?                                                                                                                                                             | Rain gauges are assigned to a subcatchment based on Thissen Polygons.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Session 3<br>Sep 15, 2017 | Standard time or Daylight Saving<br>Time should be applied<br>consistently to rainfall and flow<br>monitoring data                                                                                          | Daylight Saving Time was used for both rainfall and flow metering data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                           | Flow monitoring noise should be smoothed out for model calibration                                                                                                                                          | The flow monitoring data was adjusted based upon<br>this MEG suggestion, and the calibration results<br>were updated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Session 4<br>Dec 5, 2018  | Statistics, such as root mean<br>square error, should be included<br>on the monitored vs modeled<br>volume and peak flow scatter plots                                                                      | The scatter plots were updated to include statistics of monitored vs modeled fit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                           | Calibration scatter plots should be<br>developed for all locations for each<br>event, and then a single scatter<br>plot for all locations with all events                                                   | These plots were created and included in the revised System Characterization Report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |



#### Passaic Valley Sewerage Commission Service Area System Characterization Report

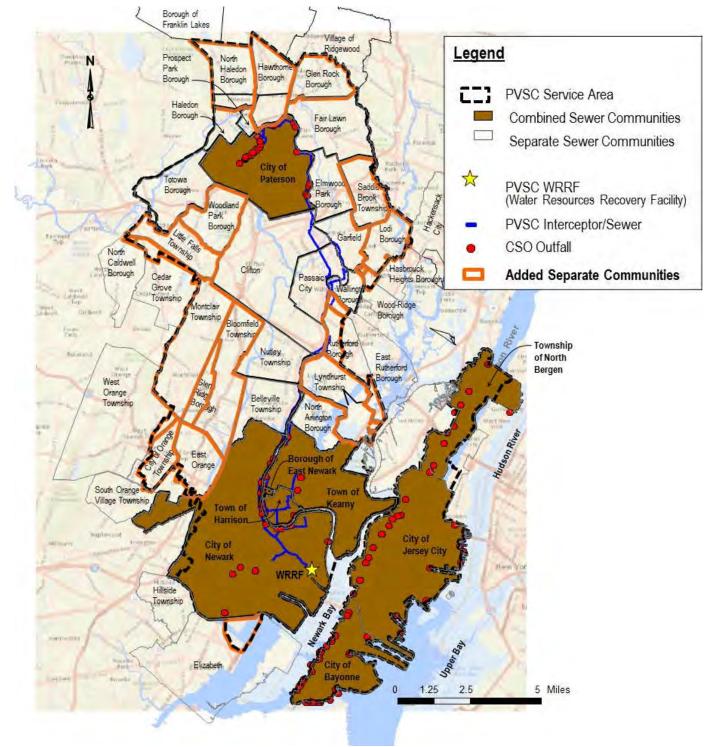



Figure I-19: Separate Communities Added during Model Expansion



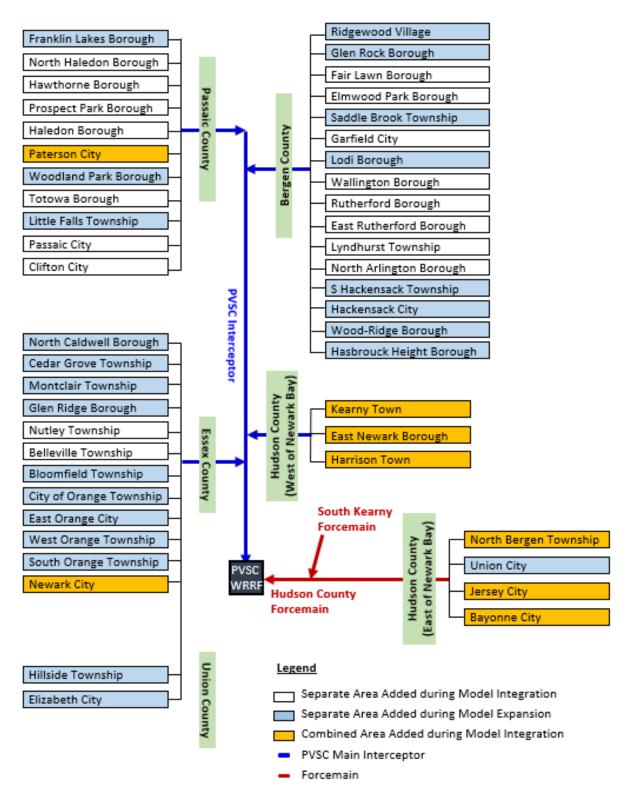



Figure I-20: Municipalities in the Final PVSC Model



## I.3 H&H MODEL COMPONENT AND INPUTS

### I.3.1 Rainfall

Rainfall data assigned to a subcatchment within the model represent the average precipitation that falls on the area within a defined time interval. Rainfall data was entered in the model as rainfall intensity occurring within a time interval. The rainfall time interval can be as short as a minute or as long as an hour. Generally, the model results satisfactorily match observed flow monitor data when the rainfall input time interval is at a maximum of 15 minutes. Rainfall data recorded at 5-minute frequency were entered into the model for both model calibration and typical year simulation.

<u>Model Calibration Rainfall</u>: Rainfall records from eight (8) rainfall stations in the vicinity of the PVSC service area were used during model calibration to account for spatial rainfall pattern in the large area. **Figure I-21** shows locations of each rainfall stations on the map and summarizes data source and available time interval in the table. 5-min rainfall data was developed for model input based on the available time interval. Rainfall station was assigned to individual model subcatchment based on Thiessen Polygons.

<u>Typical Year Simulation Rainfall</u>: Typical hydrologic period was analyzed based on rainfall records from the Newark station and Year 2004 was selected as the typical year (**Section H.2**). 5-min rainfall data was developed based on the Newark NWS ASOS 1-min precipitation records for model input. This precipitation was applied to all subcatchments in the model for the typical year simulation.



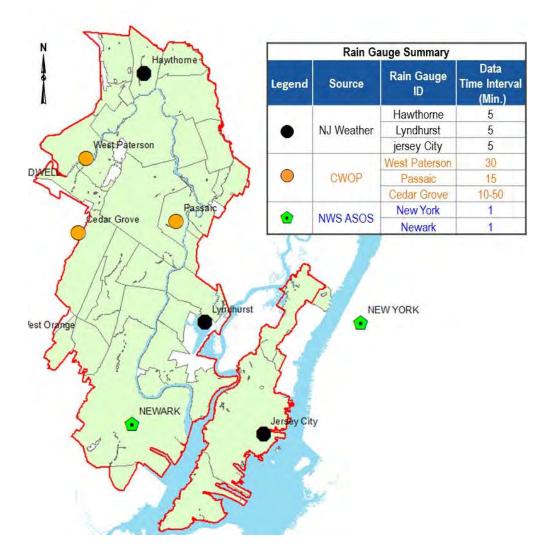



Figure I-21: Rainfall Stations Used in Model Calibration

## I.3.2 Subcatchment

The model's surficial hydrology maintains the EPA SWMM runoff method used in the prior PVSC interceptor model and the Bayonne, North Bergen, and Guttenberg models that were incorporated into the comprehensive PVSC model. The SWMM methodology separately computes runoff from impervious and pervious surfaces based on a simplification of Manning's equation for shallow flow. Manning's equation computes discharge as:

$$Q = \frac{1.49}{n} A_w R_h^{2/3} S^{1/2}$$

where:

$$\begin{split} &Q = discharge \ (ft^3/s) \\ &n = Manning's \ roughness \ coefficient \\ &A_w = wetted \ area \ (ft^2) \\ &R_h = hydraulic \ radius \ (ft) \\ &S = slope \end{split}$$

The SWMM runoff method represents flow from a subcatchment as having  $A_w = dW$ , where d the depth of sheet flow and W is the representative width of sheet flow across the subcatchment orthogonal to the principal flow path. The hydraulic radius (wetted area divided by wetted perimeter) of this flow is dW/[W+2d]. As W is much larger than d (e.g. the width of runoff from a subcatchment is measured in feet, while sheet flow depth is typically a fraction of an inch), the hydraulic radius effectively equals d (e.g. for a sheet flow depth of 0.01 ft and width of 50 ft, R<sub>h</sub> =  $0.01 \times 50 / [50 + 0.02] \approx 0.01$ ). Manning's equation can then be rewritten as:

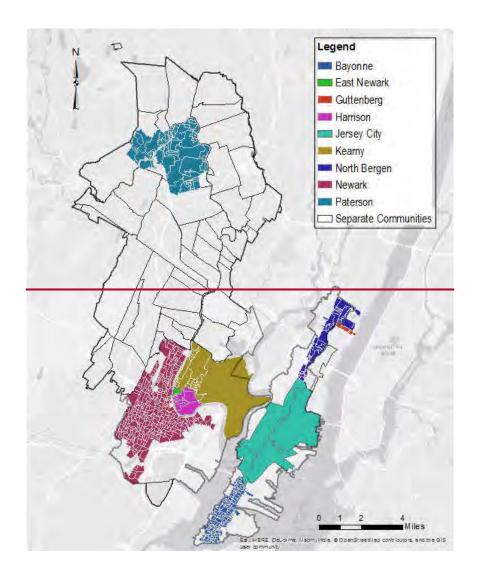
$$Q = \frac{1.49}{n} (dW) d^{2/3} S^{1/2} \text{ or } Q = \frac{1.49}{n} W d^{5/3} S^{1/2}$$

Instantaneous discharge from a subcatchment to its inlet is thus calculated from the depth of water over the subcatchment's "reservoir", Manning's "n", representative width, and subcatchment slope. This is known as the SWMM non-linear reservoir runoff model. W is the SWMM width parameter, identified in InfoWorks as the "dimension" parameter. It is usually calibrated during model development to control hydrograph shape: a large width increases instantaneous runoff and yields a sharp, rapidly-responsive hydrograph, whereas a small width yields a flatter hydrograph with a smaller peak and longer response. Manning's "n" and subcatchment slope are usually held constant during calibration, as adjusting these values has the same effect as adjusting W (the differing exponents mean that the response may be inverted or less pronounced, but the overall effect on the hydrograph is the same). The model is applied separately for impervious and pervious surfaces, and considers that initial abstraction (e.g. puddles) is applicable across most of a subcatchment, except on roofs and other steep surfaces.

## Subcatchment Area

**Figure I-22** shows the model's <u>732-1274</u> subcatchments, <u>51-51</u> of which represent sanitary flows from contracted, lessee, and non-contracted contributing communities. **Table I-6** summarizes the number and size of subcatchments in each combined sewer community. Modeled contributing




areas are generally smaller than total community area; some areas drain directly to receiving waters. Others, such as Newark Airport and the surrounding industrial area, are served by separate drain systems. As the model was assembled from various component models, the level of detail varies considerably among communities. Bayonne, which was previously represented in an independent model, has the most detail, with an average subcatchment size of 8 acres. Jersey City, which is only coarsely represented in this model, as it is currently being separately considered in another study, has the least detail, with just four subcatchments. The other combined communities have average subcatchment sizes ranging from 31-10 acres in Jersey CityEast Newark to 199250 acres in Kearny. Detailed characteristics of all combined subcatchments for the baseline model, including surface area, basin width, percent impervious, effective impervious, slope, Manning's Roughness, etc., are included in **Appendix C**.

|                         | Total                                     | Contributing                             | g area (acres)                            |                         | Average Acres             |  |
|-------------------------|-------------------------------------------|------------------------------------------|-------------------------------------------|-------------------------|---------------------------|--|
| Municipality            | Contributing<br>Area (acres) <sup>1</sup> | Combined                                 | Separate                                  | Subcatchments           | per<br>subcatchment       |  |
| Bayonne                 | 1, <del>742</del> 750                     | <del>1706<u>1714</u></del>               | 36                                        | 229                     | 8                         |  |
| East Newark             | 62                                        | 62                                       | 0                                         | <del>2</del> 1          | <del>31<u>62</u></del>    |  |
| Guttenberg              | <del>124</del>                            | 111                                      | <del>13</del>                             | 5                       | <del>25</del>             |  |
| Harrison                | <del>777<u>7</u>778</del>                 | 4 <u>23427</u> <u>354352</u> <u>1011</u> |                                           | <del>78<u>71</u></del>  |                           |  |
| Jersey City             | <del>5<u>3</u>,365</del> 958              | <u>3,958</u> 5,365                       | 0                                         | 4 <u>393</u>            | <del>1,341<u>10</u></del> |  |
| Kearny                  | 4 <u>,0063,185</u>                        | 1,243                                    | <u>1,942</u> 2,763                        | 16                      | <del>250<u>199</u></del>  |  |
| Newark                  | 10, <del>036<u>050</u></del>              | 7, <del>153<u>167</u></del>              | 2 <u>,</u> 883                            | 304                     | 33                        |  |
| North Bergen            | 1, <u>414</u> 591                         | 1, <u>414</u> 552                        | I, <u>414</u> 552 <u>390</u> 4 <u>1</u> 4 |                         | 3 <u>4</u> 6              |  |
| Paterson                | 5,1 <u>39</u> 95                          | 4,595                                    | <u>544</u> 600                            | <del>67<u>226</u></del> | <del>77<u>23</u></del>    |  |
| 40 Sanitary communities | 55,214                                    | 0                                        | 55,214                                    | 51                      | 1,083                     |  |
| Total                   | <del>84,112<u>81,589</u></del>            | 2 <u>0</u> 2, <u>579</u> 210             | 61, <u>010</u> 902                        | <u>1272</u> 732         | <del>115<u>64</u></del>   |  |

#### Table I-6: Subcatchment Summary

Note:

1. The total acreage in the table above includes only the subcatchment areas in the model that contribute flow to the PVSC WRRF. The acreage does not include rivers, creeks or unsewered areas within a municipality.





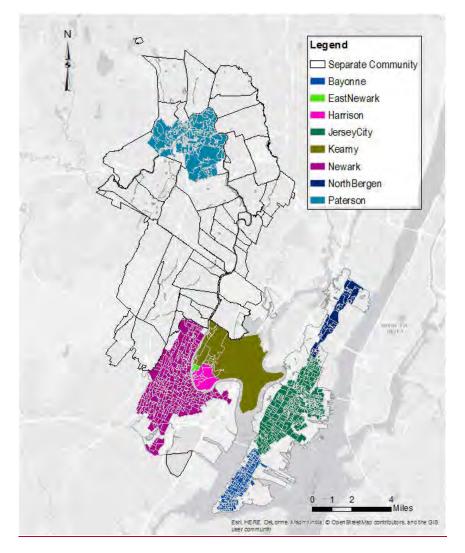



Figure I-22: The PVSC Service District

## Subcatchment Percent Imperviousness

Effective imperviousness is the fraction of a subcatchment from which all rainfall runs off after initial abstraction for puddles and other minor depressions. It is calibrated in the combined sewer communities except Bayonne through adjustment of the "Runoff routed internally (%)" parameter. The Runoff routed internally parameter identifies the fraction of a catchment's total impervious surface (i.e. surfaces with negligible infiltration capacity) that drains onto adjacent pervious ground, such as roof leaders that drain to lawns. In Bayonne, no distinction was made between effective and total imperviousness in the model input data. **Table I-7** presents total and effective impervious area and percentages for each combined sewer community. Total imperviousness for all the combined sewer subcatchments computed from the *2011 National Land Cover Database (NLCD; Homer, C.G., et al., 2015)* is approximately 70 percent, while effective imperviousness was calibrated as 41 percent. The disparity between these values suggests that the contributing area for the collection system is smaller than the modeled areas; while **Table I-7** shows that modeled areas are already smaller than the community extent, the



true contributing areas appear to be smaller still. While the difference between total and effective impervious area suggests that modeled areas may be overestimated, the table indicates the comparative extent of effective impervious area among the communities: Newark account for 35 and Jersey City together account for 65 percent of the impervious area across the combined service area, Paterson accounts for 21 percent, North Bergen, Jersey City, and Bayonne and Paterson account for 21-36 percent, and the other communities (East Newark, Kearny, and Harrison) account for 14-8 percent.

| Community                | Modeled<br>Area (ac)         | Total<br>Impervious<br>Area (ac) | Effective<br>Impervious<br>Area (ac) | Total<br>Imperviousness<br>(%) | Effective<br>Imperviousness<br>(%) |
|--------------------------|------------------------------|----------------------------------|--------------------------------------|--------------------------------|------------------------------------|
| Bayonne <sup>1</sup>     | 1,714                        | 1,376                            | 1,005                                | 80                             | 59                                 |
| East Newark              | 62                           | 52                               | 31                                   | 84                             | 50                                 |
| Guttenberg               | <del>111</del>               | <del>95</del>                    | 4 <del>8</del>                       | <del>86</del>                  | 4 <del>3</del>                     |
| Harrison                 | 427                          | 342                              | 145                                  | 80                             | 34                                 |
| Jersey City <sup>2</sup> | <del>6,337<u>3,</u>958</del> | 4 <u>,5702,683</u>               | <u>2,683</u> 3,304                   | <u>68</u> 72                   | <u>68</u> 52                       |
| Kearny                   | 1,243                        | 782                              | 82 <u>390452</u> 63                  |                                | <del>31<u>36</u></del>             |
| Newark                   | 7,167                        | 4,942                            | 2,839                                | 69                             | 40                                 |
| North Bergen             | 1, <del>555<u>4</u>14</del>  | <del>1,093<u>994</u></del>       | <u>641498</u>                        | 70                             | 41 <u>35</u>                       |
| Paterson                 | 4,595                        | <del>2,994<u>3,001</u></del>     | <del>1,006<u>806</u></del>           | 65                             | <del>22<u>18</u></del>             |
| Total                    | <del>23,210</del> 20,579     | <del>16,246<u>14,173</u></del>   | <del>9,409<u>8,461</u></del>         | <del>70<u>69</u></del>         | 41                                 |

#### **Table I-7: Impervious and Effective Impervious Area**

1. Imperviousness and effective imperviousness not distinguished in model for Bayonne. Total impervious area reported from NLCD; effective imperviousness is as specified in model.

 Imperviousness and effective imperviousness not distinguished in model for Jersey City. Information in the table is based on received model from Jersey City-is modeled coarsely in PVSC model. Jersey City has its own detailed model that was not used for this project.

### Subcatchment Width

Subcatchment width is a principal calibration parameter, as hydrograph timing has many controlling factors such as catch basin density and conveyance characteristics of pipes omitted from the hydraulic model. For this study, widths in areas that had not been recently calibrated were initially specified based on a regression relationship for existing widths in the model, with width (feet) calculated as 300 A<sup>0.6</sup>, where A is area in acres. For example, the median subcatchment area across all the combined sewer communities is 15 acres. The estimated width for a 15-acre subcatchment is 1500 feet, or 100 ft/ac. This can also be considered as an overland flow length of 430 feet, although the SWMM method does not explicitly account for overland flow. While unit width depends on various factors, higher values are generally associated with faster runoff and lower values with attenuated runoff. As shown in **Table I-8**, Bayonne has the highest unit width, and Guttenberg and North Bergen have the lowest unit widths.



| Community    | Unit Width (ft/ac)       |
|--------------|--------------------------|
| Bayonne      | <del>123</del> <u>99</u> |
| East Newark  | <del>68</del> <u>57</u>  |
| Guttenberg   | 9                        |
| Harrison     | <del>64<u>52</u></del>   |
| Jersey City  | <del>21</del> 50         |
| Kearny       | <del>31</del> 20         |
| Newark       | <del>90<u>62</u></del>   |
| North Bergen | <del>9</del> 7           |
| Paterson     | <del>67</del> <u>37</u>  |
| Total        | 4 <u>251</u>             |

### Table I-8: Subcatchment Unit Width

#### Subcatchment Slope

Subcatchment slope was transferred from the component models into the systemwide model with only minor adjustments (except for the Jersey City values, which were directly estimated for this study). Average values by community are shown in **Table I-9**. Slope on its own is not of key importance, since, as discussed above, it is composited with width and Manning's "n" for computing runoff rates, and the width parameter was adjusted through calibration.

| Community    | Slope (%)                |
|--------------|--------------------------|
| Bayonne      | 1.0                      |
| East Newark  | 3.4                      |
| Guttenberg   | <del>0.5</del>           |
| Harrison     | <u>2.32.7</u>            |
| Jersey City  | <del>0.5<u>1.3</u></del> |
| Kearny       | 3.5                      |
| Newark       | 2.1                      |
| North Bergen | 4 <u>.24.1</u>           |
| Paterson     | <u>2.2</u> 1.7           |
| Total        | <u> 1.82.1</u>           |

#### Table I-9: Average Slope %

### **Depression Storage**

Except in Bayonne, impervious area was partitioned so that 75 percent of each subcatchment has an initial abstraction depth of 0.05 inches, and 25 percent of the area has no initial abstraction (representative of pitched roofs). In Bayonne, all impervious area is subject to 0.05 inches initial abstraction. Pervious areas across the entire model were specified with initial abstraction of 0.1 inches. During continuous simulation, available initial abstraction depth is restored based on evaporation.



# Manning's "n" Roughness Coefficient

Overland flow travels slower or faster depending on the roughness of the surface in the subcatchment. The higher the roughness coefficient, the greater the friction and the slower the flow travels. Again, this is a model parameter that cannot be practically measured. A typical range of Manning's "n" suggested by the SWMM is 0.011-0.024 for impervious area and 0.05-0.80 for pervious area. The initial values were set to 0.02 for impervious surfaces and 0.05 for pervious surfaces. Roughness is an empirical value and may be treated as a calibration parameter if necessary.

## Soil Infiltration

Pervious areas were uniformly modeled using the Horton infiltration equation with an initial infiltration rate of 5 inches per hour, and a limiting rate of 2 inches per hour. This typical infiltration rate was estimated from review of soils data for the area. Much of the area is identified in the national soils database as "urban land", for which no hydraulic properties are identified. The predominant named soil types are Boonton, Riverhead, Greenbelt, Whippany, and Parsippany, each of which has a saturated conductivity between 1 and 4 inches per hour. As few storms have sustained rainfall exceeding 2 inches per hour, runoff from pervious area is simulated for only a few hours a year. Most runoff in the combined service area comes from impervious surfaces. It is thus not possible to distinguish the impact of pervious area runoff from the available flow metering data. This is typical for CSO studies in areas with well-drained soils, such as those predominant in the PVSC combined service area.

# I.3.3 Trunk sewer and Main Interceptor

Most of the gravity sewer mains and PVSC Interceptor in the final PVSC model were imported from the previous models during model integration. Sewer size, shape, invert, and Manning's "n" value were inherited from the previous models as well. A small amount of new sewer lines were added as needed during model expansion or refinement. Input for the new sewer lines were prepared based on available sewer GIS information or with appropriate assumptions (for example: assuming constant slope for neighboring sewers).

Manning's roughness coefficient is related to the pipe material. Manning's "n" values in the model are in the range of 0.009 to 0.049. Approximately 72% of the sewers have Maning's "n" of 0.015 in the model, 14% sewers have Manning's "n" of 0.010, and 10% with Manning's "n" around 0.013. The Manning's "n" may be changed during calibration to account for minor loss or additional sediment depositions in the pipe

# I.3.4 Manhole

Most of the manholes in the final PVSC model were imported from the previous models during model integration. Manhole invert and rim were inherited from the previous models as well. A small number of new manholes were added as needed during model expansion or refinement. Input for the new sewer lines were prepared based on available sewer GIS information or with appropriate assumptions (for example: assuming constant slope for neighboring sewers, manhole rim at the ground contour, etc.).



# I.3.5 CSO Outfall

All the permitted/active CSO outfalls were included in the model. More than half of the CSO outfalls have flap gates to prevent water backup from receiving water body. Outfall information in the final PVSC model were mostly imported from the previous models during model integration.

### I.3.6 Regulator

CSO regulators and outfalls serve as combined sewer reliefs necessitated by stormwater entering the sewer system and exceeding the hydraulic capacity of the sewers and/or treatment plant. Wet weather flows in excess of the collection system's capacity are discharged to the receiving water body. There are 50 regulators included in the PVSC model. Regulator gate and weir dimensions and elevations were mostly inherited from the previous model during model integration. Regulator drawings received from PVSC were carefully reviewed to validate the settings in the model (**Table I-10**).

|                                     | Overflow Weir |       |        |            | Regulating Sluice Gate / Orifice |         |          |        |            |        | Real    |
|-------------------------------------|---------------|-------|--------|------------|----------------------------------|---------|----------|--------|------------|--------|---------|
| Regulator #                         | Drawing       |       | PVSC M | PVSC Model |                                  | Drawing |          |        | PVSC Model |        |         |
|                                     | Crest         | Width | Crest  | Width      | Invert                           | Width   | Height   | Invert | Width      | Height | Control |
| P_015A (S.U.M. Park)                | 152.9         | 2.5   | 152.9  | 2.5        | 151.87                           | 1.25    |          | 151.87 | 1.25       |        |         |
| P-001A (Curtis Pl.)                 | 146.9         | 3.83  | 146.9  | 3.83       | 143.94                           | 3       | 1        | 143.94 | 2.25       |        |         |
| P-003A (West Broadway)              | 139.5         | 4     | 139.5  | 4          | 137.4                            | 1.25    |          | 137.4  | 1.25       |        |         |
| P-005A (Bridge St.)                 | 133.4         | 5     | 136.71 | 5          | 131.7                            | 0.833   | 1.667    | 131.7  | 1.25       |        |         |
| P-006A (Montgomery St.)             | 134.2         | 8.0   | 135.25 | 8          | 129.53                           | 2       |          | 129.53 | 2          |        |         |
| P-007A (Straight St.)               | 133.8         | 6     | 133.8  | 5          | 130.1                            | 1.83    | 3        | 130.1  | 1.25       |        |         |
| P-010A (Keen St.)                   | 135.4         | 4     | 135.4  | 4          | 133.44                           | 1.67    | 0.83     | 133.44 | 1.25       |        |         |
| P-010A (Warren St.)                 | 133.85        | 4     | 135.21 | 3          |                                  |         |          |        |            |        |         |
| P-016A (Northwest)<br>modified      | 138.8         | 8     | 140.94 | 8.5        | 136.25                           | 2.5     |          | 136.25 | 2.5        |        |         |
| P-017A (Arch St.)                   | 135.7         | 4.5   | 135.69 | 3.67       | 132.6                            | 1       |          | 132.6  | 1          |        |         |
| P-032A (Hudson St.)                 | 135.2         | 4     | 135.2  | 4          |                                  |         |          |        |            |        |         |
| P-022A (Short St.)                  | 132.6         | 4.5   | 132.6  | 4.5        | 130.63                           | 2       |          | 130.63 | 2          |        |         |
| P-021A (Bergen St.)                 | 132.7         | 4.5   | 132.7  | 4.5        | 130.75                           | 1       |          | 130.75 | 1          |        |         |
| P-013A (E. Eleventh St.)            | 133.4         | 4.83  | 133.4  | 4.83       | 131.7                            | 1.67    | 0.83     | 131.7  | 1.25       |        |         |
| P-014A (Fourth Ave.)                | 140.9         | 4.5   | 140.9  | 3          | 137.76                           | 1.67    | 0.83     | 137.76 | 1.25       |        |         |
| P-023A (Second Ave.)                | 129.8         | 4.5   | 130.56 | 5          | 127.4                            | Not a   | vailable | 127.4  | 1.25       |        |         |
| P-024A (Third Ave.)                 | 130.3         | 4.5   | 130.3  | 5          | 128.2                            | 1.67    | 0.83     | 128.2  | 1.25       |        |         |
| P-025A (East 33 <sup>rd</sup> Ave.) | 128.9         | 8.58  | 129.87 | 8.58       | 127.07                           | 3       | 1        | 127.07 | 2          |        |         |
| P-026A (East 20th Ave.)             | 129.2         | 5.5   | 128.92 | 5.5        | 126.95                           | 1.67    | 0.83     | 126.95 | 1.66       | 0.83   |         |
| P-027A (Market St.)                 | 131.1         | 7.11  | 131.1  | 4.0        | 129.6                            | 3.5     | 1.167    | 129.6  | 3.5        | 2.0    | Yes     |
|                                     |               |       |        |            | 129.6                            | 3.5     | 1.167    | 129.6  | 3.5        | 0.0    |         |

### Table I-10: PVSC Regulators



|                                   | Overflow Weir |       |        |       | Regulating Sluice Gate / Orifice |       |        |            |       |        |              |
|-----------------------------------|---------------|-------|--------|-------|----------------------------------|-------|--------|------------|-------|--------|--------------|
| Regulator #                       | Drawin        | g     | PVSC M | lodel | Drawing                          |       |        | PVSC Model |       |        | Real<br>Time |
|                                   | Crest         | Width | Crest  | Width | Invert                           | Width | Height | Invert     | Width | Height | Control      |
|                                   |               |       |        |       |                                  |       |        |            |       |        |              |
| N-002A (Verona Ave.)<br>modified  | 110.43        | 41    | 103    | 6     | 102.65                           | 2.5   | 2.5    | 99.33      | 2     | 2      | Yes          |
| N-004A/005A (Herbert)<br>modified | 114.34        | 41    | 105.55 | 6.667 | 107.06                           | 2     | 2      | 103.6      | 1.5   | 1.5    | Yes          |
| N-008A (Fourth Ave.)              | 103.5         | 6     | 103.5  | 6     | 100.7                            | 1.5   | 1.5    | 100.7      | 1.5   | 1.5    | Yes          |
| N-009A (Clay St.)                 | 103.24        | 4     | 103.24 | 4     | 102.4                            | 1.66  | 0.83   | 102.4      | 1.66  | 0.83   | Yes          |
| N-010A (Clay St.)                 | 105.12        | 8.42  | 105.12 | 8.42  | 101.24                           | 6     | 3      | 101.24     | 6     | 3      | Yes          |
|                                   | 105.12        | 8.42  | 105.12 | 8.42  | 101.24                           | 6     | 3      | 101.24     | 6     | 3      |              |
|                                   | 105.12        | 8.42  | 105.12 | 8.42  |                                  |       |        |            |       |        |              |
| N-014A (Rector)<br>modified       | 102.56        | 5.5   | 103.66 | 5.5   | 99.97                            | 1.5   | 1.5    | 101.07     | 1.5   | 1.5    | Yes          |
| N-014A (Saybrook)<br>modified     | 102.33        | 7     | 103.43 | 7     | 99.02                            | 2     | 2      | 100.12     | 2     | 2      | Yes          |
| N-015A (City Dock)<br>modified    | 98.67         | 14    | 98.67  | 14    | 95.67                            | 3.5   | 2.5    | 95.67      | 3.5   | 2.5    | Yes          |
| N-016A (Jackson St.)              | 97.62         | 7     | 97.62  | 4.5   | 96                               | 1.5   | 1.5    | 96         | 1.33  | 1.33   | Yes          |
| N-017A (Polk St.)                 | 97.8          | 8     | 97.8   | 7     | 95.2                             | 1.5   | 1.5    | 95.35      | 1.33  | 1.33   | Yes          |
| N-018A (Freeman St.)              | 100.26        | 4     | 100.26 | 4     | 99                               | 2     | 2      | 99         | 2     | 2      | Yes          |
| N-022A (Roanoke Ave.)             | 98.93         | 6     | 98.93  | 6     |                                  |       |        |            |       |        |              |
| N-027A/029A (Waverly)             | 102           | 4.5   | 102    | 4.5   | 96.4                             | 4     | 2.33   | 96.4       | 4     | 2.33   |              |
| N-025A (Peddie St.)               | 98.6+         | 6     | 98.6   | 8     | 93                               | 4     | 2.33   | 93         | 4     | 2.33   |              |
|                                   | 98.6+         | 8     | 98.6   | 8     |                                  |       |        |            |       |        |              |
|                                   | 105.85        | 5     | 98.6   | 8     |                                  |       |        |            |       |        |              |
|                                   | 105.85        | 5     | 98.6   | 8     |                                  |       |        |            |       |        |              |
| N-030A (Ave. A)                   | 102.32        | 10    | 102.32 | 10    | 99.04                            | 4     | 3      | 99.04      | 4     | 3      |              |
| N-023A (Adams St.)                | 98.54         | 7     | 98.54  | 7     |                                  |       |        |            |       |        |              |
| K-001A (Stewart Ave.)             | 120.85        | 4.5   | 120.27 | 1.5   | 119.07                           | 1     |        | 119        | 1     |        |              |
| K-004A (Nairne Ave.)              | 107.9         | 1.5   | 108    | 1.5   | 106.9                            | 1     |        | 107        | 1     |        |              |
| K-006A (Johnston Ave.)            | 99.9          | 5     | 100.9  | 10    | 98.7                             | 1.5   |        | 98.2       | 1.5   |        |              |
| , , , , , , , , , , , , , , , , , | 100.1         | 5     |        |       |                                  |       |        |            |       |        |              |
| K-007A (Ivy St.)                  | 103           | 9     | 103    | 9     | 100.2                            | 3     | 1      | 100.2      | 3     | 1      |              |
| K-010A (Duke St.)                 | 102.5         | 4     | 102.5  | 4.5   | 98.84                            | 1     | 1      | 100.45     | 1     |        |              |
| E-001A (Central Ave.)             | 101.6         | 4     | 101.6  | 4     | 99.2                             | 1.25  |        | 99.2       | 1.25  |        |              |
| H-001A (Hamilton Ave.)            | 101.2         | 4     | 101.2  | 4     | 99.8                             | 1.25  |        | 99.8       | 1     |        |              |
| H-002A (Cleveland Ave.)           | 102.2         | 4     | 102.2  | 4     | 101                              | 1     |        | 101.2      | 1     |        |              |



### Passaic Valley Sewerage Commission Service Area System Characterization Report

|                          | Overflo | ow Wei | r          |       | Regula  | Real  |        |            |       |        |         |
|--------------------------|---------|--------|------------|-------|---------|-------|--------|------------|-------|--------|---------|
| Regulator #              | Drawing |        | PVSC Model |       | Drawing |       |        | PVSC Model |       |        | Time    |
|                          | Crest   | Width  | Crest      | Width | Invert  | Width | Height | Invert     | Width | Height | Control |
| H-003A (Harrison Ave.)   | 103.9   | 4      | 103.9      | 4     | 101.4   | 1.25  |        | 101.4      | 1.25  |        |         |
| H-005A (Middlesex St.)   | 100.8   | 3.5    | 100.8      | 3.5   | 99.1    | 1     |        | 99.1       | 1     |        |         |
| H-006A (Bergen St.)      | 99.9    | 4      | 99.9       | 4     | 97.9    | 1     |        | 97.9       | 1     |        |         |
| H-007A (Worthington Ave) | 102.4   | 4.5    | 102.4      | 4.5   | 101.2   | 1     |        | 101.2      | 1     |        |         |

Note:

- 1. Dimension in feet.
- 2. Red font color was applied when the dimensions were different between the Drawings and the PVSC Model. The PVSC Model inputs were maintained.
- **3.** Refer to **Section I.3.10** for detailed real time control information for the regulators with "yes" in the last column.

# I.3.7 Pump Station and Force Main

The Hudson County Force Main was added in the model based on record drawings. It conveys flows from the municipalities located east of Newark Bay (including North Bergen, Union City, Jersey City and Bayonne) to the PVSC wastewater treatment plant.

In addition to the pump stations inherited from the previous model, South Kearny Pump Station and force main were added to the model to convey flows from the Kearny Meadowlands District and South Kearny District. Both districts are served with separate sewers. The service area of the pump station is shown in **Figure I-23.** Maximum capacity of the pump station is 17.5 MGD, with dry weather flows around 1.6 MGD.

