Supplemental CSO Team - Session #10

Held: January 22, 2019 Senior Citizens Center Borough of East Newark

Agenda:

- Introductions
- **Prior Meeting Recap**
- Reducing Combined Sewer Overflows Using a Surface Channel

CLEAN WATERWAYS Healthy Neighborhoods

System

Presented by Stevens Institute of Technology Senior Design Students: Jason Farkas, Ryan Nguyen, Paul Potenza

PVSC Facilities Inventory and Condition Assessment Analysis Program (Phase V)

Presented by Kristie Wagner, PE, CDM Smith

Green Infrastructure Database for the PVSC Service Area

Presented by Christopher C. Obropta, Ph.D., P.E., Rutgers Cooperative Extension Water Resources Program

Evaluation of Alternatives Briefing

Presented by John Dening, PE, Mott MacDonald

Supplemental CSO Team – Session 10 PVSC Service Area North Bergen MUA Service Area (Woodcliff Treatment Plant) Long Term Control Plan January 22, 2019

> CLEAN WATERWAYS Healthy Neighborhoods

Agenda

- Introductions
- Prior Meeting Recap
- Reducing Combined Sewer Overflows Using a Surface Channel System Presented by Stevens Institute of Technology Senior Design Students: Jason Farkas, Ryan Nguyen, Paul Potenza
- PVSC Facilities Inventory and Condition Assessment Analysis Program (Phase V) Presented by Kristie Wagner, PE, CDM Smith
- Green Infrastructure Database for the PVSC Service Area Presented by Christopher C. Obropta, Ph.D., P.E., Rutgers Cooperative Extension Water Resources Program
- Evaluation of Alternatives Briefing Presented by John Dening, PE, Mott MacDonald
- Questions
- Adjourn

Introduction and Recap

Supplemental CSO Team Members

Member	Organization		Member	Organization
Dan Smereda	Bayonne Water Guardians		Sue Levine	Paterson Smart
Lisha Smereda	Bayonne Water Guardians		Ruben Gomez	City of Paterson Economic Development
Nicole Miller	Newark DIG		Sheri Ferreira	Greater Paterson Chamber of Commerce
Drew Curtis	Ironbound Community Corporation		Betty Jane Boros	New Jersey Business & Industrial Association
Robin Dougherty	Newark Greater Conservancy/Newark Business Partnership	,	Vacant	Montclair State University - Passaic River Institute
Jorge Santos	Newark Community Economic Development Corporation		Christopher C. Obropta, Ph.D	Rutgers University - Cooperative Extension Water Resources
Christopher Pianese	Township of North Bergen		Captain Bill Sheehan	Hackensack Riverkeeper
Janet Castro	Hudson Regional Health Commission Town of North Bergen		Harvey Morginstin	Passaic River Boat Club & Passaic River Superfund CAG
Thomas Stampe	North Bergen "Sustainable Jersey" group		Laurie Howard	Passaic River Coalition
Nancy Kontos	Bunker Hill Special Improvement District		Ben Delisle	Passaic River Rowing Association
Alison Cucco	Jersey City Environmental Commission		Patricia Hester-Fearon	Town of Kearny
Michele Langa	NY/NJ Baykeeper		Christopher Vasquez	Town of Kearny

Permittees Glen N.Haledon Rock Hawthorne Prospec Fair Haledon Lawn Municipality Permittee **CSOs WWTP** Paterson Imwood Saddle Totowa Park Brook Woodland 30 **Bayonne MUA** Bayonne Park 1 ittle Garfield Lod Falls Borough of East Newark East Newark Clifton PassaieWallington Town of Harrison Harrison 7 Montdair utherford Nutley Bloom field Lyndhurst Jersey City MUA Jersey City 21 N.Bergen Glen **Belleville** Ridge Arlington Guttenberg **PVSC** Kearny Town of Kearny 5 Orange E.Orange Newark Keamy Newark City of Newark 18 Jersey Newark City North Bergen MUA North Bergen 7 City of Paterson Paterson 23 Bayonne **PVSC** 0 Town of Guttenberg Guttenberg Woodcliff North Bergen MUA* North Bergen 1 114 Total

* North Bergen MUA conveys flows to both PVSC and Woodcliff WWTPs

Project Status Update

59-Month Program Schedule and Milestones

Timeline for Evaluation of Alternatives

Supplemental CSO Feedback Summary

- Community benefits should be considered in the rating factor
- Consider ordinances for wet-weather rules, including industrial wet-weather management
- Incentivize water saving measures and use of green infrastructure
- Green infrastructure practices can be designed to achieve HIGH bacteria reductions and increased volumetric reductions.

	Storage and Treatment Technologies									
Tech		Priı Go	mary bals	Comr	Оре	Consi Te	Being	Recon A		
Bacteria Reduction Practice nology Group		Volume Reduction	nunity Benefits	lementation & ration Factors	der Combining w/ Other chnologies	Implemented	nmendation for Iternatives ivaluation			
Linear Storage _ 1	Pipeline	High	High		Can only be implemented if in-line storage potential exists in the system; increased potential for basement flooding if not properly designed	No				
	Tunnel	High	High		Requires small area at ground level relative to storage basins; disruptive at shaft locations; increased O&M burden.	No				
	Vortex Separators	None	None		Space required; challenging controls for intermittent and highly variable wet weather flows. Vortex separators would remove floatables and	Yes				
Treatment -CSO Facility	Screens and Trash Racks	None	None		Prone to clogging; requires manual maintenance; requires suitable physical configuration; increased O&M burden. Screens and trash racks	Yes				
	Fuzzy Filters	None	None		Relatively low O&M requirements; smaller footprint than traditional filtration methods. This technology primarily focuses on TSS removal,	Yes				
	Additional Treatment	High	High		May require additional space; increased O&M burden.	No				
Treatment -WRTP	Wet Weather Blending	Low	High		Requires upgrading the capacity of influent pumping, primary treatment and disinfection processes; increased O&M burden. Wet weather blending does not address bacteria reduction, as it is a secondary treatment bypass for the POTW. Permittee must demonstrate there are no feasible alternatives to the diversion for this to be implemented.	Yes				
Treatment -Industrial	Industrial Pretreatme nt	Low	Low		Requires cooperation with Industrial User's; more resources devoted to enforcement; depends on IU's to maintain treatment standards. May require Permits.	Yes				

Permit Requirements

- Evaluate the feasibility of potential control alternatives, including:
 - Green infrastructure
 - Increased storage capacity in the collection system
 - Treatment expansion or storage at PVSC
 - Inflow and Infiltration (I/I) reduction
 - Sewer separation
 - Treatment of CSO discharge
 - CSO related bypass of secondary treatment at PVSC

Reducing Combined Sewer Overflows Using a Surface Channel System

Jason Farkas Ryan Nguyen Paul Potenza

Advisors Dr. David A. Vaccari, P.E. Dr. Leslie Brunell, P.E. Dr. Valentina Prigiobbe

The CSO Problem

Combined Sewer Overflow

Proposed Solution

Roadside Channels

Long Term Control Plan

Passaic Valley Sewerage Commission

- 8 Municipalities
- 330 Million Gallons Per Day (MGD)
- Eliminating or reducing CSO events

Project Focus

Evaluate Alternatives

East Newark

55 Acres 2700 People Single CSO Outfall High Density Residential/Industrial Along Passaic River Estimated 22 MG per Year

East Newark Location

Site Visit

PVSC Line Crew

Site Visit

East Newark Regulator

Site Visit Bollards Access Doors FLOW Access Hatch Hydraulic Relief Screen Pipe Connection Guide Frame with Flow Director Plates FLOW LiftMaster[™]Frame Drain Dry Grid Flow Director

Netting Chamber Schematic

Hydrology

Study of the movement of water

East Newark

- Small urban watershed
- Drainage dictated by roadways
- External Downspouts

East Newark Topographic Map

Alternative Solutions

Sewer Separation

Off-Site Storage

On-Site Treatment

Stormwater Redirection

Roadside Channels

Boswell Cost and Analysis

2007 Report Cost Estimates

- Sewer Separation
 - \$3.6 Million
- Off-Site Storage
 - \$3.6 11 Million
- Does Not Include Land Acquisition
- Treatment and Redirection not analyzed

Design of Channels

Regulatory Requirements

- Channel load capacities
- CSO Reduction
- Erosion at outfall
- Contaminated Soil

Equations

Rational Equation

• Determine Runoff

Q = CiA

Q = runoff (cfs) C = runoff coefficient (no units) i = rainfall intensity (in/hr) A = watershed area (acres)

Manning's Equation

• Size Channels

$$Q = VA = \left(\frac{1.49}{n}\right)AR^{\frac{2}{3}}\sqrt{S} \quad [U.S.]$$

- Q = runoff (cfs) V = flow velocity (ft/s) A = cross-sectional area (ft²)
- N = Manning's roughness coefficient (in/in)
- R = Hydraulic Radius (ft)
- S = bottom slope (ft/ft)

Design Storm

Largest storm in 2004 EWR Rainfall Year

- 25 yr, 2 hr event
- 1.5 in/hr

Slopes

Street	Start	End	Length (ft)	S Elev (ft)	E Elev (ft)	Difference (ft)	Slope (ft/ft)
Sherman	North 3rd	North 2nd	270	56	44	12	.044
	North 2nd	John	250	44	26	18	.072
	John	Grant	240	26	20	6	.025

System Layout

Central Ave (North) System	Area (ft ²)	Area (acres)	C Total (ft ²)	Cumulative Rainfall Runoff (cfs)	Slope of Roadway	Channel Size (in)	Design Capacity (cfs)
B8	52253.1	1.2	52253.10	1.81	0.027	8"x8"	3.33
A26	14008.59	0.3	66261.69	2.30	0.019	8"x8"	2.79

Central Ave (North) System	Area (ft ²)	Area (acres)	C Total (ft ²)	Cumulative Rainfall Runoff (cfs)	Slope of Roadwav	Channel Size (in)	Design Capacity (cfs)
B8	52253.1	1.2	52253.10	1.81	0.027	8"x8"	3.33
A26	14008.59	0.3	66261.69	2.30	0.019	8"x8"	2.79
B2	15844.5	0.4	15844.50	0.55	0.072	6"x6"	2.52
A1	66559.5	1.5	66559.50	2.31	0.058	8"x8"	4.88
A12	19905.3	0.5	19905.30	0.69	0.005	8"x8"	1.43
PIPE 1			86464.80	3.00	0.005	15" diameter	4.96
A11	71310.6	1.6	173619.90	6.03	0.007	14"x14"	7.53
PIPE 2			239881.59	8.33	0.005	21"diameter	12.17

Central Ave (North)			Cumulative	Cumulative Rainfall	Slope of Roadwav	Channel	Design Capacity
System	Area (ft ²)	C Total (ft ²)	Area (acres)	Runoff (cfs)	(ft/ft)	Size (in)	(cfs)
A27	13741.68	309610.47	7.1	10.75	0.008	16"x16"	11.50
A14	67239	147411.00	3.4	5.12	0.005	14"x14"	6.37
						24"	
PIPE 5		457021.47	10.5	15.87	0.005	diameter	17.38
B13	148727.2	148727.20	3.4	5.16	0.0135	12"x12"	6.94
	168315.8						
A28	4	774064.51	17.8	26.88	0.014	20"x20"	27.58
Total Area							
(acres)			17.8				

Future Progress

- Channel Material
- Channel Coverings
- Regulator Entry
- Cost Estimation

Channel Covers

Benefits to the Community

- Minimum Disruption
- Public Awareness
- Clean Waterways
- Improved Drainage
- Lower Costs

Flooded Pedestrian Area

Benefits Beyond East Newark

- Reduced bacterial pollution
- Reduced nutrient pollution

Stormwater Outfall

Progress to Date

Special Thanks to

Dr. Leslie Brunell Dr. David A. Vaccari Dr. Valentina Prigiobbe Mayor Joseph Smith Mike Hope Sheldon Lipke Bridget McKenna Marques Eley Lisa Oberreiter Brigite Goncalves

Frank Rossi Nicki Louloudis Frank Pestana Giselle Diaz

References

- 1. <u>https://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?src=bkmk</u>
- 1. <u>https://www2.census.gov/geo/docs/maps-data/data/gazetteer/county_sub_list_34.txt</u>
- 1. <u>http://www.akronwaterwaysrenewed.com/about-us/combined-sewer-overflow-cso.aspx</u>
- 1. <u>https://www.villageofshorewood.org/505/Sanitary-Sewer-System</u>
- 1. <u>https://www.workingpressuremag.com/water-unleashed-greater-chicago-mccook-reservoir-first-time/</u>
- 1. <u>https://www.lkt-luckau.de/en/products/small-sewage-treatment-systems-up-to-50-pe/sbr-treatment-systems/article-lkt-biovario_0.html</u>
- 1. https://www.un.org/sustainabledevelopment/water-and-sanitation/
- 1. https://www3.epa.gov/npdes/pubs/owm0272.pdf

Facilities Inventory and Condition Assessment Analysis Program (Phase V)

PASSAIC VALLEY SEWERAGE COMMISSION

Kristie Wagner, PE, BCEE CDM Smith

January 22, 2019

Presentation Overview

- Project Scope Age and Extent of PVSC Sewer Assets
- Purpose Proactive Inventory and Condition Assessment Analysis Program
- Assessment Phase Work and Rehabilitation Recommendations
- Planned Construction Projects
- Public Outreach and Mitigation of Impacts

PVSC Sewer Assets

- Over 41 miles of pipe, original construction 1910s & 1920s
 - Main Interceptor: 21 miles, 45" to 153" diameter
 - Branch Interceptors, Laterals and Local Sewers: 15 miles, 8" to 64" diameter
 - 11 River Crossings
 - Primary Outfall Tunnel to NY Harbor
 >5 miles long
- Largely non-reinforced cast-in-place concrete

PVSC Sewer Assets – Where are they?

- Service Area:
 - 48 Municipalities
 - 5 Counties

PVSC Sewer Assets – Where are they?

Numerous Critical Locations, High Impact of Failure

90" Diameter Main Interceptor State Street, Passaic

141" Main Interceptor -Beneath Panasonic Building, Newark

PVSC Sewer Assets – Where are they?

Critical Locations (Highways Route 21 and Route 20)

72" Main Interceptor Within Route 20, Paterson

72" Main Interceptor -Within Route 20, Paterson

Why have a proactive program?

- Stay ahead of failures
 - Sinkholes, road collapses, disruption in service
 - Environmental Impacts
- Avoid costly and disruptive Emergency Repairs
 - Planned projects are more economical than emergency repairs
 - 4 Emergency Repair projects since 2012

Why have a proactive program?

- Similar Assessment Performed in 1990s
 - >20 years ago; Not all assets able to be located and assessed
- Phases I through III (1999 through 2001)
 - ± 23,000 linear feet rehabilitated- open-cut, CIPP, sliplining, and spray-applied coatings
- Phase IV (2012-2016)
 - ± 7800 linear feet rehabilitated- CIPP and sliplining
- Recent Emergency Repairs (2012-2017)
 - ± 5300 linear feet rehabilitated- CIPP

6-7 miles of 41 miles have been rehabilitated

How long will the Program Last?

- Multi-year Program
- Planning and Condition Assessments
- Repair Prioritization and Design
- Bidding and Construction

Assessment Phase

- Use the most advanced tools
 - Pipeline Inspection Tools: Televising, 3-D Laser Scanning, Sonar
 - Identify Deterioration, Deformation, Debris and Sediment
 - Sonar and Acoustic Tools for Outfall Tunnel and Diffuser Field in NY Harbor

220.1ft General Observation - Measurement outside reference to 2.4"

257.1ft Maximum Measurement Outside Reference - To 5.9"

Prioritization of Rehabilitation Work

Planned Construction

- Heavy Cleaning Contracts
 - 2019-2020
- Rehabilitation Contracts
 - 2020-2023
 - Various possible rehabilitation methods – majority trenchless

How Do We Mitigate Impacts?

- Up-front coordination with municipalities, counties, businesses, residents
- Evaluation Phase:
 - Roving lane closures; night work when appropriate
- Design Phase:
 - Identify impacted businesses and residents
- Construction Phase:
 - Lane closures, Road Closures/Detours
 - Notifications to residents and businesses
 - Minimize construction duration and interruption of sewer service

Extensive Public Outreach Efforts

- Varied formats and languages
- Interactive Website
- Informational Meetings
- Construction Notices
- Primary Goals:
 - Notify the Public of potential impacts
 - Educate the Public on purpose of program
 - Smooth coordination with municipal and county officials
 - Provide easy access to information

Project Overview

Phase V Facilities Inventory and Condition Assessment Analysis (FICAA)

Main and Branch Interceptor Sewers, Laterals/Local Sewer Connections, and Outfall Tunnels

The Passaic Valley Sewerage Commission has retained a team of qualified consultants to perform an inspection and evaluation of its main and branch interceptor sewers, river crossings, outfalls;

manholes, chambers and appurtenant items, and to develop recommendations and designs for observed deficiencies. Inspection techniques will vary, but much of the work will be completed using robotic television and multi-sensor inspection (including laser and sonar imagery) within the existing pipelines. This work will be partly visible to the public, with trucks parked at access manholes and chambers, and inspection equipment being taken in and out of manholes. In total, over 35 miles of sewer and 5 miles of outfall tunnel will be inspected as part of this project.

Following completion of the evaluation phase of work, recommendations for repairs will be made. Ultimately, as part of this program, PVSC anticipates up to 9 construction contracts including deaning and debris removal, structural rehabilitation of existing pipelines and structures, and rehabilitation of specialty flow metering equipment. The PVSC system service area includes, and inspection work will be performed in, XX towns over 5 counties.

ENVIRONMENTAL VALUE

- Prevent deterioration and failure of collection system and structural failures
- Reduce disruption in conveyance and treatment of wastewater
- Dmit discharge of raw (untreated) wastewater
 to the environment

interactive website www.pvscsewers.com

Conclusion

- Majority of conveyance system is sound, but over 100 years old
- Areas of degradation, infiltration, and heavy debris

- Anticipated 14+ miles cleaning, 2019-2020
- Anticipated 3+ miles rehabilitation, 2020-2023
- Phased proactive rehabilitation beyond 2023

Thank you! Questions?

RUTGERS

THE STATE UNIVERSITY OF NEW JERSEY

Green Infrastructure Database For the PVSC Service Area

Christopher C. Obropta, Ph.D., P.E.

obropta@envsci.rutgers.edu

January 22, 2019

www.water.rutgers.edu

Need for a Green Infrastructure Database

- Identify location and type of completed green infrastructure practices
- Identify owner/responsible party of green infrastructure practices
- Track impervious drainage area managed by green infrastructure practices
- Track volume of stormwater runoff managed by green infrastructure practices

RUTGERS

What information is necessary?

- Location information
- Brief project description
- Green infrastructure type
- Green infrastructure size
- Contributing drainage area
- Volume of stormwater managed (gal/year)
- Responsible party
- Maintenance plan

Database Example – UConn LID Atlas

lidmap.uconn.edu

Database Examples – NJ Hydro Map

- C 🛆 🔒 Secure | https://hydro.rutgers.edu/view-project/101295/

🔢 Apps 🧧 Dell 🔯 Mail - jdbergs@envs 🦹 myRutgers Portal 🦹 SEBS/NJAES File post 🧗 Yahoo Fantasy Basel: 👼 AOL Mail 🎅 Find Articles | Rutger 🔚 Linkedin 🚯 NJDEP Tier A SW Peri 🤬 BaseCamp

☆ ▲ 🗎 :

Outlets

Home Contributors About Downloads Documents / Forms Contacts Log In

OS B				
Name	W	Name	ES	
Type	Sharp-Crested	Туре	Spillway Weir	
	Weir	Length	100 Feet	
Length	78 Inches	Elevation	0 Feet	
Crest Elevation	85.2 Feet	Material	grass	
Discharge Coeff.	0	Discharge Coeff.	88.5	
Discharge Equ.		Discharge Equ.		
Notes	na	Notes	na	
Name	0			
Туре	Circular Orifice			
Diameter	3 Inches			
Invert Elevation	0 Feet			
Discharge Coeff.	0			
Discharge Equ.				
Notes	na			
Discharge Latitude	Discharge Longitude	Discharge Northing	Discharge Easting	
40 484600355812	-74.619097709656	601460 48186156	458998.60301671	
Drainage Areas				
Name	1.30	Name	1.10	
Curve Number	64.84	Curve Number	69.48	
Drainage Area	15.4 Acres	Drainage Area	51 Acres	
Time of Concentration	39 Minutes	Time of Concentration	38 Minutes	
Impervious Cover	2.91%	Impervious Cover	13.66%	

Stage-Storage Discharge

RUTGERS

Water Resources Program

https://tinyurl.com/pvsc-gi

Who can use and enter information?

- Database to be hosted and managed by Rutgers Cooperative Extension Water Resources Program
- General project information can be submitted to RCE WRP using a standardized form
- Agencies and individual municipal authorities have access to database to track projects and calculate impact
- Agencies and authorities have access to hold owner/responsible party accountable for operations and maintenance

RUTGERS

THE STATE UNIVERSITY OF NEW JERSEY

Questions or Comments?

Christopher C. Obropta, Ph.D., P.E.

obropta@envsci.rutgers.edu

Matthew Leconey

matthew.leconey@rutgers.edu

www.water.rutgers.edu

Questions and Final Discussion

